“The far-reaching distributional effects of global warming:
Evidence from half a century of climate and inequality data”

[This Draft: Jan 2024]

David Castells-Quintana' & Thomas McDermott?

Abstract:

Climate change is already impacting several development outcomes, including economic
growth, human health and mortality, agricultural productivity and even conflict. Moreover, the impact
of climate change is expected to be unevenly distributed across locations and population groups. In
particular, the worst effects of climate change are expected to be felt in low-income countries.
Similarly, within countries, the most vulnerable to these effects are typically low-income regions and
households. While the literature to date has provided evidence of the between-countries inequality-
increasing effect of global warming, evidence for inequality within countries remains limited. In this
paper, we empirically explore the connection between climate change and long-run distributional
dynamics within countries. To do so, we first build a global panel dataset combining gridded data on
climate variables with gridded population data, and country-level data on a range of inequality
measures and development outcomes. We use these data to test climate effects on several dimensions
of inequality, including the (interpersonal) distribution of income, using traditional Gini coefficients,
indices of concentration of both income and wealth, proxies of inequality in the spatial distribution
of economic activity within countries, and measures of inequality in life expectancy. We complement
our country-level analysis with an analysis at the subnational level for selected countries (US, Russia
and Spain). Our evidence shows a clear positive and statistically significant relationship between
higher temperatures and increases in different measures and dimensions of inequality, both at the
country and subnational level. The role of higher temperatures is robust to a wide range of controls,
different specifications and estimation techniques.
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1. Introduction

Climate has been shown to be a key driver of a range of development outcomes, including
economic growth, human health and mortality, agricultural productivity and even conflict (Dell et al.
2014; Carleton and Hsiang 2016; Castells-Quintana et al. 2017). There is now increasing concern that
climate change will heavily impact prospects for development. According to latest estimates from the
IPCC, global average temperatures are expected to rise by between 1.5 and 5.7 degrees Celsius by the
end of the century, depending on the evolution of greenhouse gas emissions (IPCC 2021). Along
with gradual changes in global temperatures there will be an increase in the frequency and intensity
of extreme weather events. For 2 degrees of warming, the frequency of droughts, for instance, will
more than double, while the frequency of a one-in-50-year extreme heat event will increase almost
14-fold. Understanding the socio-economic consequences of these changes is of first-order
importance not just for informing climate change mitigation and adaptation strategies, but also for
the design of development policies.

The impacts of climate change are not felt homogeneously, but rather they are unevenly
distributed across locations and population groups, with potential consequences for inequality. In
particular, the worst effects of climate change are expected to be felt in low-income countries, and
within countries the most vulnerable to these effects are typically low-income regions and households
(Castells-Quintana et al. 2018). Recent evidence suggests that climate change is increasing inequality
between countries (Diffenbaugh and Burke 2019). And there is also recent empirical evidence
suggesting that climate change has an impact on the spatial concentration of economic activity
(Cattaneo and Peri 2021; Castells-Quintana et al. 2021), with important consequences on how income
and wealth is generated and captured across space. However, to date, there continues to be limited
evidence at the international level of the within-country distributional impacts of climate change.

In this paper, we empirically explore the connection between climate change and
distributional dynamics within countries. To do so, we first build a global panel dataset combining
gridded data on climate variables with gridded population data, country-level data on a range of
income inequality measures and data on several development outcomes. We use these data to test
climate effects on several dimensions of inequality, including the (interpersonal) distribution of
income, using traditional Gini coefficients, indices of concentration of both income and wealth,
proxies of inequality in the spatial distribution of economic activity within countries, and measures
of inequality in life expectancy. Our country-level data includes information for more than 140
countries worldwide, over the 1955-2015 period. We complement our country-level analysis, with an
analysis at the subnational level for the US, Russia and Spain. Using panel-data econometric
techniques, we test whether (and how) climatic variation is associated with changes in the distribution
of income within countries. Specifically, we isolate the effect of climate on distributional outcomes
by exploiting random variation in weather conditions over time. In a long-differences set up, we also
exploit the fact that different countries have experienced different amounts of warming over the past
half century. Finally, we look at distributional impacts of higher temperatures beyond income
dynamics. These far-reaching distributional consequences of global warming are robust to a wide
range of controls, different specifications and estimation techniques.

Our paper relates to several strands in the literature. First, we relate to the literature on the
socio-economic impacts of climate change (for recent reviews see Castells-Quintana et al, 2017; Patel
et al, 2021). Second, we relate to the literature on the determinants of income inequality (for a recent
review see Furceri and Ostry 2019). Finally, we relate to recent papers exploring the distributional
effects of climate change, either looking at individual countries (Mideksa 2020; Chisadza et al., 2023),
between countries (Tol et al, 2004; Harrington 2018; Diffenbaugh and Burke 2019; Noah and Burke
2019) and within them (Palagi et al, 2022; Paglialunga et al, 2022). We contribute to this nascent
literature in a number of ways: First, by providing empirical evidence on the role of global warming



on the long-run evolution of income-inequality within countries, using a large and novel global panel
dataset; second, by looking not only at aggregate income inequality measures, like the Gini coefficient,
but also at other dimensions of inequality, including concentration of income and wealth, as well as
of economic activity across space; third, by providing evidence on the warming-inequality relationship
at different subnational levels for several countries; and finally, by providing empirical insights on the
distributional impacts of higher temperature beyond income dynamics.

Our focus on measuring inequality over longer time periods is significant for at least two
reasons. First, recent papers that test the effect of climate on within country income inequality have
tended to rely on annual measures of inequality that involve imputing values, whereas our data are
based on newly assembled and more consistent data on income inequality with observations at 5-year
intervals. Second, and perhaps more importantly, the finding of a short-run relationship between
climate and inequality (based on annual data) is perhaps unsurprising, given the well-established
evidence on differential impacts of climate-related disruptions and extreme weather events across
income groups. Our evidence suggests that these inequality-enhancing effects are persistent. Or in
other words, that current and historical adaptation to climate changes (including, for example,
relocation across space or between economic sectors) are insufficient to mitigate the disproportionate
impact of climate on lower income groups.

The remainder of the paper is structured as follows. In Section 2, we briefly review the
literature and provide some theoretical insights behind the potential impact of changes in climatic
conditions on the distribution of income. In Section 3, we present our global data and derive stylised
facts on global trends over the past half century. Section 4 reports results of our econometric analysis:
First, estimating a long-run (i.e., 50-year change) relationship between climate and inequality; second,
estimating the climate-inequality relationship using our full global panel data; third, looking at
measures of concentration of income and wealth; and finally, exploring distributional impacts of
rising temperatures beyond income dynamics. Section 5 concludes and derives policy implications
from the results.

2. Inequality within countries: the potential role of changing climatic conditions
The determinants of tnequality

There is growing concern about income inequality within countries, as data show that, in many
countries, it has increased significantly during the last decades (see for instance Milanovic, 2011;
Cairo-i-Cespedes and Castells-Quintana, 2016; Castells-Quintana 2018; Gradin 2022). There is indeed
a long strand in the literature studying the determinants of economy-wide inequality. Papers in this
literature usually consider inequality a# the country level (i.e., Fields, 1979, for Least Developed
Countries; Milanovic, 1994; Li et al., 1998; Gustafsson and Johansson, 1999; Barro, 2000; Vanhoudt,
2000; Frazer, 2000; and Roine, et al. 2009, for world samples; Odedokun and Round, 2004, for Africa;
and Castells-Quintana and Larri, 2015, for Latin America). Other papers study inequality a# #he regional
level (i.e., Perugini and Martino, 2008; Tselios, 2008, 2014; Rodriguez-Pose and Tselios, 2009; Royuela
et al., 2014; Castells-Quintana et al., 2015).3

As highlighted by most of these papers, one key and common determinant of inequality is
the level of development (and urbanization), in the spirit of Kuznets (1955). The literature has also
focused on other dynamics that potentially influence the evolution of inequality at the country level.
One of these dynamics relates to socio-economic factors, including economic growth, investment,
and human capital accumulation (i.e., education). Another relates to demographics, including total
population and fertility rates. A third group considers institutional and socio-political factors,
beginning with the level of democracy, the level (and portfolio) of government spending, levels of

3 Another strand of literature studies income inequality az #he city level (i.c., Duncan and Reiss, 1956; Richardson, 1973;
Haworth et al., 1978; Nord, 1980; Long et al., 1977; Alperovich, 1995; Baum-Snow and Pavan, 2013; Behrens and Robert-
Nicoud, 2014; Glaeser et al., 2015; Sarkar et al., 2016; Ma and Tang, 2016; Castells-Quintana et al., 2020).



corruption and the incidence of social tensions and conflict. A fourth strand focuses on economic
structure, including sectoral shares, and in particular the role of mineral rents and the size of the
agricultural sector.

A final group of dynamics found to play a role in the evolution of inequality relates to external
factors. Recent papers have shown the relevance of the level and profile of exports (see for instance
Nguyen and Su, 2022). Similarly, other papers point to a potential role of aid and microfinance flows
(Castells-Quintana et al, 2019). Finally, external prices, in particular commodity price shocks, have
also been found to significantly affect the evolution of income inequality (Mohtadi and Castells-
Quintana 2021). However, to the best of our knowledge, there remains limited evidence on the role
of changes in climatic conditions on long-run inequality dynamics.

The potential role of climate change

Climate change has important socioeconomic consequences. On the one hand, direct economic (and
human) impacts, including the destruction of fields, infrastructure, repair costs, etc. On the other
hand, and probably more important in the long run, indirect impacts. These include lower long-run
economic growth and macro and financial instability (Dell et al. 2012; Burgess et al. 2017), higher
probability of conflict and institutional change (Miguel et al. 2004; Ciccone 2013; Hsiang et al. 2013)
and a spatial reallocation of population and economic activity, usually from rural to urban areas
(Barrios et al. 2006; Henderson et al. 2017; Catleton & Hsiang 2017; Peri & Sasahara 2019; Castells-
Quintana et al., 2018, 2020). Castells-Quintana et al. (2017) review these potential long-run impacts
of climate change on development outcomes.

Climate change can also have distributional consequences. As recent evidence shows, climate
change is aggravating inequalities between countries (Harrington 2018; Diffenbaugh and Burke 2019;
Noah and Burke 2019). And there are various ways in which climate change may also be expected to
exacerbate within-country inequality. To begin with, climate change usually has greater impacts in
rural than urban areas, and rural areas are, on average, poorer than urban areas. Moreover, in both
rural and urban areas, climate change usually hits disproportionally the more vulnerable: they tend to
live in riskier locations, and are the first to be displaced by climatic shocks; they depend more on
climate-dependent activities and have fewer coping mechanisms to deal with climatic shocks (i.e.,
savings, access to financial services, etc.); and public response (adaptation) is usually addressed to
protect valuable assets owned by the rich. In this line, Islam and Winkel (2017) identify three main
channels through which climate change can increase inequality by affecting disproportionally
disadvantaged groups: 1) due to higher exposure, ii) due to higher susceptibility to damage caused by
climate change because of the lack of finances or asset diversification, and iii) due to lower ability to
cope and recover from the damage of climate change. Climate change can also alter distributional
dynamics through several socio-economic impacts. Higher temperatures, for instance, affect access
to basic services, like clean water, sanitation facilities and affordable food, health outcomes, and
finally labour productivity (Dasgupta et al., 2021). Changes in climatic conditions also impact
agricultural productivity (Ortiz-Bobea et al., 2021) as well as productivity in non-agricultural sectors,
in both developing and developed countries (e.g. Deryugina and Hsiang 2014; Zhang et al. 2018).
Furthermore, climatic shocks can also reinforce poverty traps, conflict and instability, which usually
affect the poor more than the rich (see the review in Castells-Quintana et al. 2018).

While some recent papers have provided theoretical insights on the connection between
climate change and inequality (see Mideksa 2010; Islam and Winkel 2017), very few papers have
empirically explored the within-countries distributional effects of climate change. Recently, Cappelli
et al,, (2021) study the connection between climate change-induced natural disasters and inequality in
a sample of 149 countries. Palagi et al. (2022) show how rainfall anomalies are associated with annual
changes in inequality, while Paglialunga et al. (2022) also look at annual temperature increases for the
period 2003-2017. These papers focus on annual income inequality data as measured by Gini
coefficients, and mostly focus on agriculture as the fundamental channel in the climate-inequality
nexus. We aim to contribute by i) focusing on the /lng-run impact of global warming on the evolution
of inequality within countries, using a large and novel global panel dataset for over half a century
(1955-2015), ii) looking at several inequality measures, including Gini coefficients and measures of
concentration of income, wealth and economic activity in space, iii) providing evidence on the



warming-inequality nexus at different subnational levels for several countries, and iv) exploring
distributional impacts of rising temperatures beyond income dynamics.

3. Climate change and inequality: a look at global data

To explore the connection between climate change and the evolution of inequality within
countries, we build a global dataset combining gridded data on climate variables with gridded data on
population, country-level data on several measures of income inequality, concentration of wealth and
economic activity in space, and inequality in life expectancy, complemented with data on several
development outcomes. Our global panel includes information for more than 140 countries
worldwide, over a long period of time (1955-2015).4

For climatic variables, we draw on country-level datasets obtained from the World Bank’s
Climate Change Knowledge Portal (CCKP)5, as well as gridded weather data from the CRU TS
version 4.03 dataset from the University of East Anglia (Harris et al. 2014).6 As our focus is in long-
run dynamics, and in order to merge with the inequality data that we use, we aggregate for every
country in five-year periods from 1955 to 2015.7 We focus on average annual temperatures, capturing
variations in the climate from one five-year period to the next, and long-run changes, capturing
variation (in warming) over a 50-year period. We also control for total annual rainfall as another key
climatic variable discussed in the related literature. As our focus is on socio-economic consequences,
it is natural to look at the spatial distribution of population. Changes in climatic conditions will have
a stronger socio-economic impact where more people live. We thus match our gridded weather data
with gridded population data (both on a 0.5-degree grid) from the Global Population of the World
v4 dataset.® This allows us to construct pgpulation-weighted versions of our climatic variables. Appendix
A provides more information on the construction of our climatic variables.

For interpersonal income inequality, we rely on the World Income Inequality Databases
(WIID) compiled by United Nations University World Institute for Development Economics
Research (UNU-WIDER).? The WIID databases (version 31 May 2021) include information for up
to 208 countries or territories between 1950 and 2019, including estimates for the percentile share of
each country’s total net income. This allows us to look at different income inequality measures,
including Gini coefficients, but also the concentration of income in different population groups, like
the Top 10%, Middle 50% and Bottom 40%. Furthermore, previous papers that look at annual data
have used Solt (2020) database, which heavily relies on interpolations and requires multiple
imputation analysis. By using WIID databases in 5-year periods, we significantly reduce this issue (see
Gradin 2021 for more on the properties of the WIID databases).

In addition to income inequality at the national level, we also compile data on income
inequality at the sub-national level, for select countries: the US (both at State and County level), Spain

4 In practice, our baseline sample used throughout most of our empirical analysis includes 143 countries and covers the
time period 1955-2015.

5 These are simple area-weighted country means, derived from the University of East Anglia’s Climate Research Unit
(CRU) time-series (TS) dataset of high resolution gridded monthly climatic observations.

6 The data are available from https://crudata.uea.ac.uk/cru/data/hrg/cru ts 4.03/ (last accessed June 2020).

7 Our 5-year aggregates are constructed to be backward looking, such that an observation of temperature in 2015 is
actually the mean temperature in the preceding 5-year period (i.e., 2010-2014). This is so that outcomes in our analysis are
always related to weather over the preceding period.

8 The data are available from https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-
unwpp-country-totals-revl1/data-download (last accessed June 2020). We use the version of the population data adjusted
to match UN country totals, and we take population estimates for the earliest available year in the data (2000).

9 The WIID Companion database compiles information, mostly obtained from household surveys, from a variety of
countries, either reported by various sources like PovcalNet, ECLAC, SEDLAC, National Statistics Authorities, etc., or
estimated directly from microdata (in the case of LIS and Eurostat). The corresponding series were standardized to be
comparable over time and across countries (see details in the corresponding WIID Companion technical notes).




and Russia, in each case based on official national statistics. Descriptive statistics for these sub-
national inequality data, and corresponding temperature data, are included in Appendix A.

We complement our income inequality data with measures of concentration of wealth from
the World Inequality Database (WID) and measures of spatial concentration of economic activity,
built from satellite data on night-time lights (see Appendix A for more on the construction of these
measures). We also consider inequality in life expectancy, as an alternative outcome, relying on data
from the United Nations Development Program (UNDP).

Finally, additional data used in our analysis include a range of other development outcomes,
including measures of socio-political stability and conflict as well as measures of human health. As
part of a suite of robustness tests on our main findings, we further control for potential determinants
of inequality, including GDP per capita, total population, fertility rates, export rates and urbanisation
rates, among others. These additional variables are based on data from the World Bank Development
Indicators, the Penn World Tables and the International Country Risk Guide (ICRG-PRS group).
Table A.1 in the Appendix provides definitions and sources for the different variables included in
our data, while Table A.2 provides descriptive statistics for our main variables of interest at the
national level, while Table A.3 includes summary statistics for sub-national data. In the rest of this
section, we highlight some stylised facts for our key variables.

Rising inequality within countries

Figure 1 shows the evolution of income inequality for our global sample: in Panel A, simply averaging
across countries in our sample, and in Panel B, weighting by population of each country. Panel A
shows a relatively stable evolution, with a slight increase in the last decades of the 20% century,
followed by a decrease after the year 2000 (mainly driven by progress in some developing countries,
especially in Latin America). However, when weighting by population (Panel B), inequality within
countries shows a significant increase, going from a Gini of less the 40 in 1980 to a Gini of around
45 in recent years. In other words, a majority of people in our sample has seen inequality increase in
their country over most of our period of analysis (in line with Gradin 2022). A second clear fact
relates to the important differences across countries. Figure 2 provides maps of inequality levels in
2015 (in Panel A) and the change in inequality over a 50-year period (1965-2015) in Panel B.'? Figure
A.l in Appendix A provides similar maps for concentration of income at the top (i.e., Top10).
Inequality is especially high in countries in Sub-Saharan Africa, Latin America and South Asia. While
within-country inequality has increased globally in the last 50 years, that increase has not been
uniform, with some countries experiencing declines in inequality over the period, while others have
experienced sharp increases (as shown in Figure 2, panel B, and Figure A.1, panel B).

10 For our long-run changes, we focus on the 50-year change between 1965 and 2015 to avoid potential issues with the
data at the beginning and end of the full sample period. All our results using long-run changes are robust to using
different 50-year periods or using a 70-year period (1950-2020).



Figure 1: Within-countries income inequality over time, global average, 1965-2015
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Note: Figure plots the evolution of the average in Gini coefficients for our global sample.
In panel A, a simple average across countries, while in panel B weighting by the population
of each country.

Figure 2: Within-countries income inequality maps
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Note: Panel A shows estimated Gini by country in 2015, according to data from WIID. Panel B shows the
change in the estimated Gini by country over a 50-year period (1965-2015).



Global warming

Turning to our climatic data, we can clearly see the recent process of global warming. Figure 3 shows
the global trend in temperatures over the last decades for our sample of countries. The global average
of temperatures increased by almost 0.9 degrees Celsius over our 50-year period, tracking closely with
scientific observations of global warming. Figure 4 shows a global map of increases in temperatures
by country. The increase in temperatures is not uniform across countries, with some countries
experiencing faster warming than others.!! Two countries in our data, Bolivia and Paraguay, actually
experienced modest decreases in population-weighted temperature from 1965-2015. On the other
hand, a number of countries in our sample experienced warming of more than 1.5 degrees Celsius
over this period, with the largest increase of 1.73 degrees Celsius in Sudan.

Figure 3: Global mean national level temperatures, 1965-2015
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Note: The figure shows mean annual temperature across all countries in our sample in degrees
Celsius, for each 5-year petiod from 1965-2015. The series used here is (area-weighted) temperature
for each country, aggregated from monthly observational data to 5-year averages, using gridded
weather data from CRU TS v4.03 (Hartis et al. 2014).

11 See also https://ecarthobservatory.nasa.gov/world-of-change/global-temperatures for a discussion of how global
warming does not mean temperatures rise everywhere at the same rate.




Figure 4: Change in population-weighted temperature, 1965-2015
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Note: The map shows changes in temperature (in degrees Celsius), by country, 1965-2015. The series used
here is population-weighted temperature for each country, aggregated from monthly observational data to 5-
year averages, as described in the text. (Sources: Author calculations based on gridded weather data from
CRU TS v4.03 (Harris et al. 2014), and gridded population data from the Global Population of the World v4
dataset).

Warming and increasing inequality

Figure 5 shows the association between average temperatures and income inequality (as measured by
the Gini coefficient). We consider both a long-run and a medium-term association. For the long-run
association, we look at changes in temperatures over 50 years (1965-2015) and changes in inequality
over the same period for our global sample. We compute these long-run changes using average
temperature in the most recent five-year period with those same averages 50 years previously. By
doing so, we reduce potential noise introduced by particularly hot and cold years. For inequality,
being highly persistent, we just compute the difference between inequality levels in 2015 with those
of 1965. Panel A shows the association for these long differences, controlling for regional fixed
effects. For a more medium-term association, we look at 5-year periods using our full panel data.
Panel B presents this association, controlling for country and time fixed effects. In this way, panel B
captures the connection between temperatures and inequality considering only the within-country
evolution over time (what we are after). Both figures suggest a clear association between higher
temperatures and increases in income inequality within countries over medium to longer time scales.



Figure 5: Mean temperatures and income inequality

Panel A: Long differences, 50-year Panel B: 5-year panel
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Note: Figures show binscatters. In Panel A, controlling for region fixed effects, where each point
represents 3 observations in the dataset. Temperature is the 50-year change in (population-weighted)
national level mean temperature, averaged over a 5-year period. Similarly, the Gini is the 50-year
change 1965-2015 for each country. In Panel B, controlling for country- and time-specific fixed
effects, where each point represents 40 observations in the dataset. Temperatures here are measured
in the preceding 5-year period compared to inequality.

4. Changing climatic conditions and the evolution of inequality: econometric analysis

Long-run warming and inequality

To study the association between climatic conditions and the evolution of inequality, we begin by
looking at long-run changes in our key variables for our global sample. Table 1 presents results of a
simple Deep First Difference specification, where we regress the 50-year change in inequality on a 50-
year change in climatic conditions, as in Equation (1):

Alnequality; = a4 + BiAClimate; + €; 1)

where Alnequality; is the 50-year Change in the Gini coefficient and AClimate; is the 50-year
change in average temperatures for country 7.

Results in Table 1 show a positive and statistically significant coefficient for the 50-year
change in temperatures, suggesting that countries that have experienced more warming are, on
average, also those where inequality has increased the most.

An obvious concern here might be that differences in warming over the past 50 years are not
randomly assigned across countries. As is clear from the map in Figure 4, warming has been more
pronounced in northern latitudes (in line with the predictions of climate models). Simple balance
tests on key development outcomes confirm that at a global level, countries that experienced higher
warming over the past 50 years had higher incomes, were more urbanised, had lower fertility rates
and lower shares of agriculture-to-GDP at the beginning of our sample period (see Table B.1 in the
Appendix). However, within regions, warming does appear to have been more varied. In Column (2)
of Table 1, we show that the association between long-run warming and increasing inequality is robust
to the inclusion of region fixed effects; i.e. the results are not driven by a particular world region.



The positive association between increasing temperature and increasing inequality is also
robust to controlling for changes in average rainfall and initial climatic conditions (column 3) as well
as controlling for economic growth over the 50-year period and several country-specific socio-
economic characteristics (column 4). Results in Table 1 suggest that a 1-degree Celsius increase in
average temperatures over a 50-year period has translated into a 3.5-4.3 point increase in the Gini
coefficient over the same period, a non-negligible increase, relative to an average decrease of 1.04
points in the Gini index across the countries in our sample over this period. A similar pattern of
results is reported in Appendix Table B.2, where the outcome Tgp70 is the 50-year change in
concentration of income amongst the Top 10% of earners.

Table 1: Warming and inequality, Deep First Difference (Deep FD) specification

(1) Deep FD  (2) Deep FD  (3) Deep FD  (4) Deep FD
Dependent variable: Gini (50y change)

Temperature 3.782%F 3.737* 3.559% 4.237*
(50y change) (1.475) (1.968) (2.010) (2.159)
Region FE NO YES YES YES
Initial climate NO NO YES YES
Controls NO NO NO YES
Obsetvations 143 143 143 133

Note: This table reports results of deep first difference specifications as in Equation (1). Variables are
calculated as the change over a 50-year period (1965-2015). Initial climate includes average annual
temperature and rainfall at the beginning of our sample (1960-1964). Controls include changes in
average rainfall and GDP per capita growth over the 50-year period, as well GDP per capita, export
share and agricultural valued added (to GDP) in levels (each lagged one petiod). Robust standard
errors (clustered by country) in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Warming and inequality: panel results

In this section we turn to our global panel data in 5-year periods, exploiting the random variation in
weather conditions over time, to examine short to medium-term effects on inequality. We now
consider a panel-data model as specified in Equation (2):

Inequality;; = a4 + BiClimate;; +y: + 0, + € 2

where Inequalityy is one of the different dimensions that we consider for income inequality within
countries. Climate; is our climatic variable, capturing the country’s average in temperature over the
preceding 5 years. Our panel specification also allows us to include period fixed effects, y;, which
control for common global shocks in the evolution of inequality, and country fixed effects, 6;, which
control for country-specific time-invariant characteristics of countries. Standard errors are clustered
by country. In addition, in some specifications we add several time-varying socio-economic variables
as controls.

As we include country-specific fixed effects, our panel-data specification exploits the within-
countries evolution over time, controlling for time-specific fixed effects. Our identification of
rests on the assumption that inter-temporal variation in our climate measure is exogenous with
respect to the evolution of within-country inequality, conditional on country and period fixed effects.
As clearly stated by the climate literature, variation in climatic conditions for each country depend on



the impact of a myriad of global phenomenon, including changes in oceanic and wind changes,
atmospheric pressure and more, making it exogenous to the evolution of country-level inequality.!?

Table 2 presents our main results. Column 1 omits time and country fixed effects, therefore
considering all the variation in our panel data, and considers our climatic variables without weighting
by population. We find a positive and highly significant coefficient for temperatures. In column 2,
we consider population-weighted temperatures. The coefficient for temperature continues to be
positive and significant and increases in value, pointing to the relevance of weighting by population.
In column 3, we include time effects, while in column 4 we include time and country fixed effects.
The coefficient for temperatures continues to be positive and highly significant.

Results in Table 2 suggest a significant role of rising temperature in explaining the evolution
of inequality within countries. The coefficient on temperature in column (4) can be interpreted as
indicating that a 1-degree Celsius increase in average temperatures over a 5-year period is associated
with a 1.3-point rise in the Gini coefficient.

Table 2: Warming and income inequality, panel results

Dependent variable: Gini Gini Gini Gini
Temperature 0.898*** 1.006%** 1.008*** 1.265%*
(0.0901) (0.0980) (0.0992) (0.526)
Year FE NO NO YES YES
Country FE NO NO NO YES
Observations 1,859 1,859 1,859 1,859
No. of countries 143 143 143 143

Note: This table reports results of specifications based on Equation (2) and as described in the text. The
dependent variable is the Gini coefficient (as reported by WIID). Temperature is average temperature in degrees
Celsius over the preceding 5-year period. Columns 2 onwards weight climate variables by population. All
specifications control for average rainfall. Robust standard errors (clustered by country) in parentheses. ***
p<0.01, ¥* p<0.05, * p<0.1

In Appendix B, we perform a range of robustness tests on our main panel results. Appendix
Figure B.1 shows the results of a simple event-style analysis, where we estimate [§; from equation (2)
for the first lead of our climate variables (a temporal placebo), as well as for the contemporaneous
effect and up to 5 lags (the figure only reports the estimated coefficients on temperature, but the
regressions also control for rainfall during the same period in each case). As expected, temperatures
at time 7 have no effect on the Gini at time #7. Interestingly, the event study suggests that the effects
of temperature on inequality, reported above in Table 2, are compounded over time, peaking at 47,
or up to 10 years after the temperature shock.!3

In Table B.3, we check the robustness of our results to alternative time periods and panel
specifications. First, we perform a falsification (see column 1). For falsification, we consider a simple
temporal placebo test. If the temperature-inequality link was driven by internal trends, we would still

12'To see how changes in climatic conditions at the country level are determined globally, not locally, and therefore
exogenous to national socio-economic outcomes, see for instance: https://www.climateandweather.net/global-
warming/factors-that-influence-climate

https://www.americangeosciences.org/education/k5geosource/content/climate /what-factors-determine-climate

13 The coefficient on temperature continues to be positive and statistically significant at the 5% level at t+2, and at the
10% level at t+3 and t+4, before returning close to zero at t+5. A linear combination of coefficients on temperature from
a regression with the contemporaneous and lagged temperature included together, shows an estimated cumulative
coefficient of 5.44 (p-value 0.014). This is notably quite similar in magnitude to the estimate from our long-differences
specification reported in Table 1, reinforcing our argument of a long-run impact of (gradually) increasing temperatures.




tind a positive coefficient if we assigned the change in temperatures in the following period to the
increase in inequality in the preceding period. However, as expected, we find no significant coefficient
for temperatures. This result reinforces the idea that it is the changing climatic conditions of each
country, in particular higher temperatures, which is significantly associated with increases in inequality
in that country. Second, we restrict our sample to data either post 1980 or, alternatively, post 1990.
This reduces our sample size but restricts our data to more recent, and more reliable, inequality data.
In both cases, we still find significant coefficients for temperatures (see columns 2 and 3). In terms
of alternative specifications, we include region- or country-specific time trends (see columns 4 and 5)
and consider a dynamic model by including the lag of inequality as a regressor (see column 6). The
coefficient for lagged inequality is positive and significant, reflecting the high degree of persistency
of inequality over time. Nevertheless, in all cases, our main results of an inequality-increasing role of
rising temperatures remains statistically significant.!4

In Table B.4, we test our results to the inclusion of several time-variant country
characteristics potentially relevant to explain the evolution in inequality. These include income per
capita, and its square, total population size, fertility rates, and urban rates. The coefficient for average
temperature remains significant. One notable result here is in Column (5) of Table B.4, where we add
urban rate as an additional control. The estimated coefficient on temperature here drops in magnitude
by almost a third (from 1.44 in column 5 to 1.01 in column 6), albeit remaining positive and
statistically significant (at the 5% level). This finding suggests that urbanization could be a potential
mechanism linking warming and inequality (as shown in Castells-Quintana et al. 2022). We further
investigate this here by estimating the relationship between temperatures and spatial inequality
(proxied by inequality in lights) as discussed further below.

In Table B.5, we consider a first-difference specification. When working with highly
persistent dependent variables, as inequality, it has been suggested to use first differences rather than
fixed effects (see Woolridge 2010). Our main results for temperature remain significant.

In Table B.6, we allow for more flexible specifications allowing the coefficient for
temperature to vary based on potentially relevant country characteristics: First, we allow the
coefficient to vary by income per capita levels, and second by the initial share of agriculture in total
employment. We find no evidence of significant heterogeneity of effects across these two dimensions,
at least in the cross-section. We also allow for the effect of temperature on inequality to vary as
incomes rise, or as agricultural share shifts over time for a given country, finding that the positive
temperature-inequality association is weaker as income per capita rises over time. This is expected as
richer countries have higher resilience and adaptation capacity. However, unlike the findings in recent
papers that focus on short run associations between climate and inequality (see for instance Palagi et
al, 2022), the longer-term relationship between higher temperatures and inequality that we document
appears to be independent of agricultural share.

Finally, in Tables B.7 and B.8, we look at distributional dynamics at a finer spatial scale by
looking at inequality within subnational units. Subnational data on income inequality are scarce, but
are available for some countries over relatively limited time periods. In Table B.7, we exploit sub-
national inequality data, based on official national statistics from the US, Russia and Spain, as three
different countries for which there is subnational inequality data.”® For the US, we look at state-level
as well as county-level Gini coefficients, while for Russia and Spain we look at regional estimates of

14 Interestingly, including country-specific trends (in column 5) also results in a negative and statistically significant
coefficient on average rainfall (at the 10% level), suggesting that, controlling for country-specific trends, higher rainfall is
associated with less inequality. Or, in other words, particularly excessive drying is associated with more inequality, in line
with recent results in the literature (see Palagi et al, 2022).

15 The literature has shown that warming has strong effects not only among poorer countries but also among richer ones.
Chisadza et al. (2023) have recently provided some insights suggesting that the climate—inequality nexus is not limited to
developing countties, but also existent in developed countties such as the U.S. Liang et al. (2017) have shown how
different changes in climatic conditions can explain differentiated trends in agricultural productivity within the US, with
potential distributional consequences.



income inequality. In each case, our results suggest an association between higher temperatures and
inequality even at a subnational level — when pooling observations together (with or without time
tixed effects), and when controlling for higher level fixed spatial effects. For example, for the US
data, higher temperatures at a county level are associated with higher income inequality, controlling
for year and State fixed effects.'® Given data limitations here, these results should be treated as
exploratory in nature, but are nevertheless suggestive of patterns that merit further research using
richer local or subnational level datasets than those available for this study.

In Table B.8, we rely on data from night-time lights to build measures of spatial
concentration of economic activity. Results show that rising temperatures are associated not only
with interpersonal concentration of income, but also with higher spatial concentration of economic
activity (as measured by nightlights). The effects appear to be stronger when using larger subnational
units (global administrative level 1), in line with our results for the US (where we see stronger effects
for state rather than county level inequality). These findings underline again the idea that higher
temperatures will lead to a change in how economic activity is distributed across space.

Warming and concentration of itncome and wealth

If rising temperatures have the potential to increase income inequality, do they also change the pattern
of inequality? Or, similarly, do rising temperatures affect different parts of the income distribution
differently? And, if so, increase the concentration of income and wealth? To answer these questions,
we explore how rising temperatures affect different parts of the distribution of income. The WIID
dataset includes several variables that allow us to explore the climate-inequality relationship along the
income distribution (as well as check our results to different inequality measures). In particular, we
focus on three complementary income inequality measures: the concentration of income at the Top
10% (Top10), the concentration at the Middle 50% (Middle50) and the concentration at the Bottom
40% (Bottom40). Results for these alternative measures and dimensions of inequality are presented in
Table 4. We find that higher temperatures are associated with more concentration of income at the
top of the income distribution (column 1), and less concentration at the middle and bottom of that
distribution (see columns 2 and 3). This pattern of results for concentration at the top and at the
bottom remain significant after controlling for country-specific trends (see Appendix Table C.1).
Together, these results would suggest that the inequality-increasing role of rising temperatures is
associated with increasing (relative) concentration of income at the top (i.e., the rich) at the expense
of the middle and bottom part of the distribution (i.e., the middle class and the poor).

16 Given the relatively short panels and limited number of observations available here, as well as the relatively modest
variation in Gini values over time (within units), in these subnational specifications we include spatial fixed effects at a
higher level of aggregation, rather than unit fixed effects. Interestingly, for Russian regions, where average temperatures
are very low (see summary statistics in Appendix Table A.3), we find that higher temperatures — which in this context may
be productivity enhancing — are associated with lower income inequality. If we restrict the sample to relatively warmer
Russian regions, the coefficient on temperature turns positive, as in results elsewhere.



Table 4: Warming and concentration of income

@ 2 ©)
Dependent variable: Top10 Middle50 Bottom40

Temperature 1.276%** -0.812%¢* -0.464*
(0.400) (0.265) (0.271)
Year FE YES YES YES
Country FE YES YES YES
Observations 1,859 1,859 1,859
No. of countties 143 143 143

Note: This table reports results of specifications based on Equation (2) and as described in the text.
Temperature is average temperature in degrees Celsius over the preceding 5-year period. All
specification control for rainfall and its lag. Robust standard errors (clustered by country) in
parentheses. p<0.01, p<0.05, p<0.1

If there is a long-run impact of higher temperatures on the concentration of income, we
could expect that will eventually reflect in effects on the concentration of wealth. To assess this, we
draw on data from the World Inequality Data (WID), which provides data on concentration of wealth
at the country level every ten years from 2000 to 2020. We find a positive and significant association
between temperatures and wealth concentration, robust to several time-variant controls, including
income inequality (see Table C.2). The results suggest a delayed effect from higher temperatures to
concentration of wealth. This income- and wealth-concentrating impact of rising temperatures is in
line with, and reinforces, previous findings suggesting that, globally, while the poor are getting poorer,
the rich are getting richer under climate change (see Diffenbaugh and Burke 2019).

Warming and inequalities in life expectancy

Finally, we consider the possibility of rising temperatures affecting distributional dynamics beyond
income and wealth. If international comparable data on income inequality is scarce, data availability
for other dimensions of inequality is even more limited. However, the United Nations Development
Program (UNDP) provides data on several development outcomes, including inequality in life
expectancy in 5-year intervals from 2010 to 2020. Life expectancy is not just a key dimension of
development, but also a long-run one that depends on income as well as other non-economic factors.
Focusing on (inequality in) life expectancy allows us to explore the role of rising temperatures on
inequality dynamics beyond income. As explained in Section 2, deteriorating climatic conditions have
been associated with socio-political instability and conflict (see for instance Burke et al. 2015), as well
as worse health conditions and higher mortality (see for instance Hondula et al. 2015; Ebi et al. 2022).
In Tables D.1 and D.2, in Appendix D, we explore these potential impacts of rising temperatures. In
Panel A of Table D.2, considering several proxies for instability and conflict, including government
stability, corruption and internal conflict.)7 In Panel B of Table D.2 looking at several variables for health
conditions and mortality, including wndernourishment, infant mortality, mother mortality, and the incidence
of widespread diseases like zuberculosis and malaria.'® In all cases, we find a significant coefficient for
average temperatures.

17 For this, we rely on data from the International Country Risk Guide ICRG) from the PRS group. The ICRG evaluates
several dimensions of political, economic and financial risks for some 150 countries over several decades. See Table A.1
in Appendix A for definition and sources. See Table D.1 in Appendix D for pairwise correlations between our alternative
outcomes and inequality. Most alternative outcomes are highly correlated with inequality levels.

18 Here we rely on data from UNDP and for World Bank — World Development Indicators.



These potential wide impacts of rising temperatures are likely to affect disproportionally the
most vulnerable and thus likely to have unequal consequences (see insights in Cramer 2003).
Consequently, as temperatures rise, we could expect to see not only more instability and conflict,
worse health conditions and higher mortality, but also higher inequality in life expectancy. Column 1
of Table 5 shows a significant connection between temperatures and inequality in life expectancy,
controlling for time- and country-fixed effects, while column 2 shows that this result also holds when
controlling for several time-variant factors (including income, population, fertility and urbanization).
As shown in column 3, this result is not driven by income dynamics; controlling for income inequality
(as measured by the Gini coefficient) hardly affects the magnitude and significance of the coefficient
for temperatures. By contrast, as shown in column 4, introducing proxies for (in)stability and conflict
and for health conditions and mortality yields highly significant coefficients, and makes our
coefficient for temperatures nonsignificant. In other words, the connection between rising
temperatures and inequality in life expectancy seems relate to higher instability and conflict and worse
health conditions than to merely income inequality dynamics.!?

Table 5: Warming and inequality in life expectancy

0 @ ) @
Dep. variable: IneLifExp IneLifExp IneLifExp IneLifExp
Temperature 1.497* 1.461%* 1.443%% 0.103
(0.791) (0.716) (0.721) (0.741)
Gini 0.029 0.007
(0.065) (0.052)
Stability&Conflict 0.674**
(0.266)
HumanHealth 4.652%%*
(1.330)
Year FE YES YES YES YES
Country FE YES YES YES YES
Controls NO YES YES YES
Observations 282 280 280 133
No. of countries 141 140 140 67

Note: This table reports results of specifications based on Equation (2) and as described in the text.
Gini is income inequality (lagged). Temperature is average temperature in degrees Celsius over the
preceding 5-year period. Stability&Conlflict is the principal component of government stability, corruption
and internal conflict. HumanHealth is the principal component of wndernourishment, infant mortality, mother
mortality, tnbercnlosis and malaria. All specification control for rainfall. Controls include GDPpc and its
square, total population, fertility and urban rate. Robust standard errors (clustered by country) in
parentheses. p<0.01, p<0.05, p<0.1

5. Conclusions

In this paper, we have empirically explored the connection between climate change and
distributional dynamics within countries. To do so, we first built a global panel dataset combining
gridded data on climate variables with gridded population data, country-level data on a range of
several inequality measures and data on several development outcomes. For inequality, we looked at
the (interpersonal) distribution of income, using traditional Gini coefficients, but also at indices of

19 All these results are exploratory and should not be interpreted in causal terms. It is also worth noting that, given data
limitations, introducing proxies for stability, conflict and health factors significantly reduces sample size.



concentration of both income and wealth, proxies of inequality in the spatial distribution of economic
activity (relying on night-time lights), and measures of inequality in life expectancy. Using panel-data
econometric techniques, and exploiting random variation in weather conditions over time, we have
found a positive and statistically significant role of rising temperatures on the evolution of within-
country inequality. This role of rising temperatures is robust to several controls and different
specifications and estimation techniques. Exploiting data at the state and county level for the US, and
regional data for Russia and Spain, we have shown that the climate-inequality connection also seems
to hold at the subnational level.

Our findings suggest a non-negligible impact of rising temperatures on the evolution of
income inequality: a one-degree Celsius increase in average temperatures over a 5-year period is
associated with a 1.3-point rise in the Gini coefficient. Moreover, we have shown that rising
temperatures may be connected not only with higher income inequality, but also higher concentration
of wealth and economic activity in space. Finally, we have shown that given the multiple impacts of
climate change, rising temperatures can also affect other distributional dynamics beyond income, like
inequalities in life expectancy. This distributional impact of climate change, beyond income dynamics,
is something, to the best of our knowledge, novel in the literature, and worthy of further research.

By looking at several complementary outcomes, including measures of economic, social,
political, and human development, our research points towards the high social relevance of our
findings. As we have shown, the connection between changing climatic conditions (i.e., rising
temperatures) and the evolution of inequality is likely to relate not only to income, wealth and
economic activity, but also to political stability and internal conflict, as well as indices of human
health. Understanding the socio-economic and political consequences of climate change, including
the impact on distributional dynamics, is of first-order importance not just for informing climate
change mitigation and adaptation strategies, but also for the design of development policies. Global
average temperatures are expected to rise (even in the best-case scenario), along with an increase in
the frequency and intensity of extreme weather events. For 2 degrees of warming, the frequency of
droughts, for instance, will more than double. The frequency of a one-in-50-year extreme heat event
will increase almost 14-fold (see IPCC 2021). All these climatic changes will have significant socio-
economic impacts, including effects on distributional dynamics, which calls for urgent policy action.
Further research to increase our understanding on the interplay between climatic trends and socio-
economic and political dynamics will prove to be of utmost relevance.
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Appendix A: Data overview

Table A.1: Overview of main variables and sources

Variable | Definition | Time Span | Source
I. Climatic variables
Temp_50y_change | Long-run (50-year) change in mean 1965-2015 Constructed using data
temperature from the Wortld Bank
Rain_50y_change Long-run (50-year) change in mean 1965-2015 Climate Change Knowledge
rainfall Portal (CCKP) and the
Temperature Mean annual average temperatures 1955-2020 UEA’s CRU-TS data. (See
(in degree Celsius) over preceding 5 below for more detail)
years
Rainfall Mean annual average rainfall (in mm | 1955-2020
pet year) over preceding 5 years
I1. Inequality variables
Gini Gini coefficient for the income 1950-2019 World Income Inequality
distribution Database (UNU-WIDER)
Top10 Share of income in the top 10 1950-2020
percentiles
Middle50 Share of income between the 25% 1950-2020
and 75% percentiles
Bottom40 Share of income in the bottom 40 1950-2020
percentiles
Top10_mweatlh Share of wealth in the 10 percentiles | 2000-2020 World Inequality Database
(WID)
SpatialGini Spatial Gini coefficient, using 1992-2013 Constructed using satellite
alternative subnational divisions data of night-time lights
(NOAA) and maps from
Global Administrative
Areas (GADM). (See below
for more detail)
Inel ifeExp Inequality in life expectancy (as 2000-2020 United Nations
measured by Gini coefficients) Development Program
(UNDP)
ITI. Other (control) variables
GDPpe Gross Domestic Product (GDP) per | 1960-2020 Penn World Tables
capita
Pop Total population 1960-2020 Wortld Development
Fertility Fertility rate 1960-2020 Indicators (World Bank)
Urb Utrban rate 1960-2020
AgriGDP Agricultural share in GDP 1960-2020
EmpAgr Agricultural share in total 1960-2020
employment
Exports Exports share to GDP 1960-2020
IV. Other variables
Undernonrish Undernourishment(prevalence) 2000-2020 Wortld Development
InfMortality Infant mortality 1960-2020 Indicators (World Bank)
Tuberc Tuberculosis (incidence) 1990-2020
Malaria Malaria (incidence) 1990-2020
Stability Government Stability. Range of 1985-2020 Constructed using data
values between 0=min stability and from International Country
12=max stability Risk Guide ICRG-PRS)
Corruption Corruption index. 1985-2020
IntConflict Internal conflict. We re-arrange so 0 | 1985-2020
is low risk and 12 is high risk.




Climate data

Our climatic variables are based on historical weather data, including temperature and rainfall
observations, and are derived from monthly global gridded data, which have been aggregated to
country means. The simple area-weighted country-level averages for rainfall and temperature (as used
in Column 1 of Table 1) were obtained from the World Bank’s Climate Change Knowledge Portal
(CCKP).?° These data are in turn derived from the University of East Anglia’s Climate Research Unit
(CRU) time-series (TS) dataset of high resolution gridded monthly climatic observations (see Harris
et al. 2014). However, most of our analysis uses population-weighted versions of these variables,
which we construct by combining gridded weather data from the CRU TS version 4.03 dataset from
the University of East Anglia (Harris et al. 2014) with gridded population data from the Global
Population of the World v4 dataset.”* As our focus is in long-run dynamics, in each case (for both
area-weighted and population-weighted versions) we aggregate for every country in five-year periods
from 1950-55 to 2015-20.%

Based on these data, we construct three distinct sets of climatic variables, as follows:
Long-run changes:

To begin with, we construct measures of long-run changes in temperature and rainfall, measured as
the 50-year (1965-2015) change in average temperature or average rainfall. We label these as
temp_50y_change and rain_50y_change. We compute this long-run changes using average temperature
and rainfall in the last five years with those same averages 50 years ago. By doing so, we reduce
potential noise introduced by particularly hot (wet) and cold (dry) years.

S-year averages:

The variables Temperature and Rainfall measure mean average temperatures (in degree Celsius) and
rainfall (in mm per year), at the national level, over 5-year time periods. Given that our regressions
include country fixed effects, when we include Temperature or Rainfall as explanatory variables,
estimation is based on the temporal variation in these measures for each country, i.e., the variation
relative to that country’s long-run average climate. Average annual temperatures and rainfall have
been used in global analyses of the economic effects of weather variation for example in Dell et al.
(2012). As noted, we have two versions of these average variables based on different methods for
aggregating from gridded observations to national averages; area-weighted and population-weighted.
In most of our analysis we rely on the population-weighted versions as better representing the

weather experienced by the average person for a given country-time period observation in our data.

Each of our set of climatic variables thus captures distinct aspects of weather variation; for
the long-run changes, the 50-year change in climatic conditions; and for 5-year averages, medium-

term time scale variation in the levels of temperature and rainfall.

20 Available at

http://sdwebx.worldbank.org/climateportal /index.cfmPpage=downscaled data download&menu=historical (last
accessed on 7 November 2018).

21 The data ate available from https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-
unwpp-country-totals-revl1/data-download (last accessed June 2020). We use the version of the population data adjusted
to match UN country totals, and we take population estimates for the earliest available year in the data (2000).

22 Our 5-year aggregates are constructed to be backward looking, such that an observation of temperature in 2015 is actually
the mean temperature in the preceding 5-year period (i.e., 2010-2014). This is so that outcomes in our analysis are always
related to weather over the preceding period.




Constructing measures of spatial concentration of economic activity

To construct measures proxying for the spatial concentration of economic activity, we rely on satellite
data on night-time lights. In particular, we use data from the Defence Meteorological Satellite
Program’s Operational Linescan System, operated by the National Oceanic Administration Agency,
and available at the pixel level (30 arc seconds, corresponding to <1 square kilometer at the equator)
as a yearly panel from 1992 to 2013. These data have become established as a proxy for local
economic activity in recent years (see Henderson et al., 2012; Donaldson and Storeygard, 2016). We
rely on the top-coding correction applied by Bluhm and Krause (2022) to adjust for maximum
brightness in cities. Using this data, we compute Gini coefficients in lights across spatial units. We
do this aggregating night-time lights at two different spatial levels relying on maps from the Database
of Global Administrative Areas (GADM): we use the first subnational division in GADM (gadw1) or,
alternatively, the second subnational division (gadn2). To calculate the Gini coefficients across spatial
units, we either weight by the area of each spatial unit (area-weighted ginis), ot, alternatively, weighting
by the population of each unit (population-weighted ginis). Because of their gradual changes, we assign
the first year of the lights data, 1992-1990 as well as the last year, 2013-2015, to match the
quinquennial structure of our data (1990, 1995, 2000, 2005, 2010, 2015). These measures have also
been used in Castells-Quintana et al. (2021).



Figure A.1: Top10

Panel A: 2015
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Note: Panel A shows the concentration of income at the 10% richest by country in 2015, according to data from
WIID. Panel B shows the change in this concentration by country over a 50-year period (1965-2015).



Table A.2: Main variables, descriptive statistics (Global panel, national level data)

Panel A: Climatic variables

Obs. Mean Std. Dev. Min Max
S-year panel:
Temperature (area-weighted) 1,859 18.10 8.42 -7.38 29.14
Temperatute (pop-weighted) 1,859 18.36 7.48 -2.26 29.34
Rainfall (area-weighted) 1,859 1015.54 735.18 27.35 3331.46
Rainfall (pop-weighted) 1,859 1027.94 661.45 31.17 3361.95
50-year changes:
Temp 50-y 143 0.84 0.34 -0.08 1.73
Rain 50-y 143 -8.27 107.96 -383.00 437.00

Panel B: Income inequality variables

Obs. Mean Std. Dev. Min Max
S-year panel:
Gini 1,859 44.28 11.84 15.16 77.09
Topl0 1,859 34.99 10.00 16.66 68.77
Middle50 1,859 50.12 5.26 28.11 60.30
Bottom40 1,859 14.90 5.32 1.95 30.55
50-year changes:
Gini 50-y 143 -0.90 7.07 -21.76 15.71
Top10 50-y 143 -1.37 5.68 -16.84 8.96

Panel C: Inequality in Life Expectancy
Obs. Mean Std. Dev. Min Max
S-year panel:
IneLifeExp 282 16.41 12.15 2.72 48.62

Notes: Temperatures here are in degrees Celsius, and rainfall in mm. 50-year changes are calculated as the
change from 1965-2015 (change in 5-year averages for climatic vatiables). Variables in Panel B are from the
WIID data, while Inequality in Life Expectancy (Panel C) is from the UN’s HDR data, as described elsewhere.



Table A.3: Descriptive statistics, additional datasets

Panel A: Sub-national data

Obs. Mean Std. Dev. Min Max

US — state level (2010, 2015, 2020)

Temperature 147 12.07 4.60 -0.50 23.60
Gini 147 46.06 1.90 41.90 51.38
US — county level (annual: 2010-2019)

Temperature 2,440 13.51 4.47 -2.64 25.47
Gini 2,440 44.62 3.57 32.88 60.11
Russia — region level (2010, 2015, 2020)

Temperature 241 3.72 4.97 -11.05 12.43
Gini 241 38.05 2.72 32.80 50.50
Spain — region level (2000, 2006, 2010, 2015, 2020)

Temperature 75 14.78 2.27 11.57 19.26
Gini 75 31.13 4.05 23.00 44.80

Panel B: Wealth inequality

Top 10 wealth (WID) 680 63.23 7.43 40.84 81.71

Panel C: Spatial inequality (nightlights)

SpatialGinilsqkm 810 0.51 0.21 0.05 0.94
Spatial Ginilpc 810 0.30 0.16 0.03 0.90
Spatial Gini2sqkm 738 0.67 0.19 0.16 0.96
Spatial Gini2pc 738 0.41 0.14 0.09 0.88

Notes: In Panel A, the inequality data are based on official national statistics of each country. In Panel B, wealth inequality
is from WID, while in Panel C the spatial inequality measures are constructed using night lights data, as described in
Appendix A above.



Appendix B

Table B.1: Balance tests, Global Sample (N=143)

Low Warming  High Warming Difference

) @ - st
Log(GDPpc) 7.86 8.55 -0.69%x* 412
Urb Rate % 27.46 42.08 -14.61%%* 411
Fertjh'ty rate 6.03 4.81 1.22%%% 4.15
Agri Share % 30.23 19.53 10.70%* 3.47

Note: The table shows the mean value (in columns 1 and 2) of each variable for the earliest observation in the
data, across countries with above and below median warming over 1965-2015 in our data.

Table B.2: Robustness to Long-difference results

(1) Deep FD  (2) Deep FD  (3) Deep FD  (4) Deep FD

Dependent variable: Top10 (50y change)

Temperature 3.963%FFF 3.638%* 3.453% 4.173%*
(50y change) (1.282) (1.805) (1.828) (1.930)
Region FE NO YES YES YES
Initial climate NO NO YES YES
Controls NO NO NO YES
Obsetvations 143 143 143 133

Note: This table reports results of deep first difference specifications as in Equation (1). Variables are calculated as the
change over a 50-year period (1965-2015). Initial climate includes average annual temperature and rainfall at the beginning
of our sample (1960-1964). Controls include changes in average rainfall and GDP per capita growth over the 50-year
period, as well GDP per capita, export share and agricultural valued added (to GDP) in levels (each lagged one period).

Robust standard errors (clustered by country) in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Figure B.1: Event-style analysis for temperature and Gini
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Note: The figure shows estimated coefficients (and 95% confidence intervals) on temperature from separate regression
estimates of equation (2) for the first lead, contemporaneous and up to five lags of temperature. In each regression we
control for average annual precipitation, and include country and year fixed effects. Standard errors are clustered by country
in each case.

Table B.3: Alternative time periods and panel specifications

(4) Region- (5) Country-

() Temporal 19501 (3) 1990+ specific specific  (©) Dynamic
placebo Model
trends trends
Dependent Gini Gini Gini Gini Gini Gini
variable:
Temperature 0.834 1.495%* 1.261%* 0.948%* 0.922%k 0.647%*
(0.531) (0.591) (0.606) (0.448) (0.332) (0.253)
L.Gini 0.835%5+
(0.0224)
Year FE YES YES YES YES YES YES
Country FE YES YES YES YES YES YES
Time-trends NO NO NO YES YES NO
Observations 1,716 1,144 858 1,859 1,859 1,716
Countries 143 143 143 143 143 143

Note: This table reports results of specifications based on Equation (2) and as described in the text. The dependent
variable in each column is the Gini coefficient. Temperature is average temperature in degrees Celsius over the preceding
5-year period. All specifications control for average rainfall. Robust standard errors (clustered by country) in parentheses.
ok p<0.01, ** p<0.05, * p<0.1



Table B.4: Robustness to different time-varying controls

@ O ©) ©) ©)
Dependent variable: Gini Gini Gini Gini Gini
Temperature 1.280%* 1.294%* 1.305%* 1.444%+x 1.014%*
(0.534) (0.531) (0.529) (0.491) (0.473)
L.GPDpc 0.586 1.089 0.464 5.536 5.303
(0.528) (3.007) (3.247) (3.605) (3.743)
L.GPDpc? -0.0285 0.00378 -0.261 -0.234
(0.160) (0.179) (0.203) (0.207)
L.Pop 2.62e-09 6.13e-09** 5.52e-09*
(3.13¢-09) (3.06¢-09) (3.18¢-09)
L.Fertility 0.994#kx 0.8893k*
(0.285) (0.289)
L.Urb -0.107**
(0.0461)
Year FE YES YES YES YES YES
Country FE YES YES YES YES YES
Observations 1,716 1,716 1,716 1,566 1,551
No. of countries 143 143 143 143 141

Note: This table reports results of specifications based on Equation (2) and as described in the text. The dependent
variable in each column is the Gini coefficient. Temperature is average temperature in degrees Celsius over the preceding
5-year period. All specifications control for average rainfall. Robust standard errors (clustered by country) in parentheses.
** p<0.01, ** p<0.05, * p<0.1

Table B.5: Panel First-Difference (FD) specification

(1) FD (2) FD (3) FD
Dependent variable: Gini_g Gini_g Gini_g
Temperature 1.73 1% 2.156%kk 2. 494k

(0.451) (0.523) (0.620)
Time FE NO YES YES
Controls NO NO YES
Observations 1716 1716 1400
No. of countries 143 143 140

Note: This table reports results first-difference specifications. All variables are defined as changes over 5-year periods.
Temperature is average temperature in degrees Celsius over the preceding 5-year period. All specifications control for
(changes in) average rainfall. Robust standard errors (clustered by country) in parentheses. *** p<0.01, ** p<0.05, *
p<0.1



Table B.6: Warming and income inequality, heterogeneity

M @ G @
Dependent variable: Gini Gini Gini Gini
Cross-section Dynamic
Temperature -0.300 0.905 1.856%** 1.503**
(3.672) (0.875) (0.709) (0.708)
Temperature*GDPpc 0.182 -0.088
(0.417) (0.056)
Temperature*Agr -0.0194 0.001
(0.025) (0.005)
Year FE YES YES YES YES
Country FE YES YES YES YES
Observations 1859 715 1716 572
No. of countries 143 141 143 143

Note: The dependent variable in each case is the Gini coefficient (as reported by WIID). Temperature is average
temperature in degrees Celsius over the preceding 5-year period. In columns (1) and (2) we allow for cross-sectional
differences in the temperature-Gini relationship by interacting temperature with initial (eatliest available) value of GDPp,
GDP per capita in logs, for each country in the data (in column 1) and with initial employment share in agriculture Agr,
again taking the initial (earliest available) value for each country in the data (in column 2). In columns 3 and 4, we allow for
dynamic differences in temperature-inequality relationship over time by interacting temperature with lagged values of GDPpr
and Agr. In columns 3 and 4, the lagged values of GDPpecand Agrare also included as separate controls. All columns control
for rainfall. Robust standard errors (clustered by country) in parentheses. *** p<0.01, ** p<<0.05, * p<0.1



Table B.7: Warming and income inequality, subnational results

Panel A: US (state-level)

Dependent variable: Gini Gini Gini
Temperature 0.23 6%k 0.234k0¢ 0.281%*+%
(0.0305) (0.0307) (0.0463)
Year FE NO YES YES
Region FE NO NO YES
Observations 147 147 147
No. of FE units 4

Panel B: US (county-level)

Dependent variable: Gini Gini Gini
Temperature 0.185%#* 0.184%+* 0.198*+*
(0.0216) (0.0217) (0.0749)
Year FE NO YES YES
State FE NO NO YES
Observations 2,440 2,440 2,440
No. of FE units 49

Panel C: Russia (region-level)

Dependent variable: Gini Gini Gini
Temperature -0.132%¢ -0.125%w* -0.163*
(0.0440) (0.0445) (0.0939)
Year FE NO YES YES
Fed District FE NO NO YES
Observations 241 241 239
No. of FE units 8

Panel D: Spain (region-level)

Dependent variable: Gini Gini Gini
Temperature 0.885%* 0.737%¢ 0.717*
(0.313) (0.230) (0.382)
Year FE NO YES YES
NUTS 1 FE NO NO YES
Observations 75 75 75
No. of FE units 7

Note: This table reports results of specifications based on Equation (2) and as described in the text. The dependent variable
in each case is the Gini coefficient (based on official national statistics of each country). US county level inequality data are
an annual panel (2010-2019), but for the purposes of the analysis here we only use the observed values in 2010, 2015 and
2019. Russian data are for administrative regions. These and the US state-level data include observations for three periods
(2010, 2015, 2020). The Spanish data are for autonomous regions and include five periods (2000, 2006, 2010, 2015 and
2020). Temperatures are measured in degrees Celsius. Weather data for the US are from NOAA, based on county level
data, available here: https://www.ncei.noaa.gov/pub/data/cirs/climdiv/, while regional weather data for Russia and Spain
are from the World Bank’s Climate Change Knowledge Portal (based on original data from CRU). As usual, we aggregate
the weather data to the preceding 5-year period: i.e. we match 2010 inequality with average weather conditions for 2005-
2009, 2019 inequality (US counties) is matched to weather from 2015-2018, while 2006 inequality (Spanish regions) is
matched to weather data from 2001-2005. Robust standard errors (clustered by spatial unit) in parentheses. *** p<0.01, **
p<0.05, * p<0.1




Table B.8: Warming and spatial concentration of economic activity

O) &) ©) *
SpatialGinilsgkm  SpatialGinilpc  SpatialGini2sqkm  SpatialGini2pc

Dependent variable:

Temperature 0.020%¢ 0.032:%* 0.004 0.018*
(0.009) (0.013) (0.008) (0.011)
Year FE YES YES YES YES
Country FE YES YES YES YES
Observations 816 816 744 744
No. of countries 136 136 124 124

Note: In columns 1 and 2 the spatial gini is calculated using first-level subnational divisions (i.e., gadm1 maps), while in
columns 3 and 4 using second-level subnational divisions (i.e., gadm2 maps). In columns 1 and 3, we use area-weighted
spatial ginis, while in columns 2 and 4 we use population-weighted spatial ginis. Temperature is average temperature in
degrees Celsius over the preceding 5-year period. All columns control for rainfall. Robust standard errors (clustered by

country) in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Appendix C

Table C.1: Warming and concentration of income (controlling for country-specific trends)

0 @ )

Dependent variable: Topl0 Middle50 Bottom40
Temperature 0.527%* -0.00412 -0.523%%*

(0.259) (0.180) (0.175)
Year FE YES YES YES
Country FE YES YES YES
Country-specific YES YES VES
trends
Observations 1,859 1,859 1,859
No. of countries 143 143 143

Note: This table reports results of specifications based on Equation (2) and as described in the text.
Temperature is average temperature in degrees Celsius over the preceding 5-year period. All specification
control for rainfall and its lag. Robust standard errors (clustered by country) in parentheses. *** p<0.01, **
p<0.05, * p<0.1

Table C.2: Warming and wealth inequality, panel results

Panel A:

Dependent variable:

Topl10_wealth

Topl10_wealth

Topl0_wealth

Topl0_wealth

Temperature (0.382%kk 0.4 574k 0.47 94k 0.652
(0.065) (0.073) (0.073) (0.525)
Year FE NO NO YES YES
Country FE NO NO NO YES
Observations 680 665 660 660
No. of countries 136 133 132 132

Panel B:

Dependent variable:

Topl0_wealth

Topl10_wealth

Topl0_wealth

Topl0_wealth

Temperature -0.336 -0.201 -0.342 0.504
(0.460) (0.304) (0.300) (0.537)
L.Temperature 0.716 0.682%* (.83 5%k 1.576%**
(0.457) (0.296) (0.296) (0.539)
Year FE NO NO YES YES
Country FE NO NO NO YES
Observations 678 663 660 660
No. of countries 136 133 132 132

Note: This table reports results of specifications based on Equation (2) and as described in the text. The dependent variable
is the concentration of wealth (as reported by WID). Temperature is average temperature in degrees Celsius over the
preceding 5-year period. Columns 2 onwards weight climate by population. All specifications control for average rainfall.
Robust standard errors (clustered by country) in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Appendix D

Table D.1: Pairwise correlations, inequality and alternative development outcomes

gini stability iconflict unempl.  undernur  inf mort tubercu
stability -0.15
iconflict 0.41 0.38
unemployment 0.09 -0.06 -0.06
undernur 0.53 0.02 -0.38 0.01
inf_mortal~y 0.51 -0.28 -0.50 -0.08 0.73
tubercu 0.45 0.09 -0.19 0.22 0.44 0.55
malaria 0.41 0.12 -0.10 -0.21 0.32 0.69 0.13

Table D.2: Warming and alternative outcomes

Panel A:
Dependent variable: Stability  Corruption _ IntConflict
Temperature -0.523*¢  (0.4000%** 1.012%%*
(0.222) (0.137) (0.313)
Year FE YES YES YES
Country FE YES YES YES
Controls YES YES YES
Observations 830 830 830
No. of countries 121 121 121
Panel B:
Dependent variable: ~ Undernurish InfMortality MotherMortality Tuberc Malaria
Temperature 1.724* 7.061%%x 37.988%* 19.818* 44,092
(1.008) (2.524) (18.151) (11.079) (21.878)
Year FE YES YES YES YES YES
Country FE YES YES YES YES YES
Controls YES YES YES YES YES
Observations 381 1436 840 564 359
No. of countries 127 140 140 141 91

Note: This table reports results of specifications based on Equation (2) and as described in the text, but changing the
outcome variable. Szability and IntConflict here go from 0 (low) to 12 (high). Temperature is average temperature in degrees
Celsius over the preceding 5-year period. Controls include rainfall, GDPpc and its square, total population, fertility rates
and urban rates. Robust standard errors (clustered by country) in parentheses. *** p<0.01, ** p<0.05, * p<0.
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