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1. INTRODUCTION 

Climate change is expected to lead to increases in the prevalence of extreme temperatures and 

destructive weather events, with potentially significant effects on human health (Costello et al., 

2009). To date, while numerous studies have shown a link between extreme hot and cold 

temperatures and excess mortality (Basu, 2009; Campbell et al., 2018; Deschenes, 2014), the 

impact on morbidity has received much less attention and significant gaps remain in our 

understanding. In particular, while a small number of previous studies have presented estimates 

of the effects of extreme temperatures on morbidity-related outcomes, this literature mainly 

focuses on countries or regions with relatively hotter climates and more extreme temperatures 

(Agarwal et al., 2021; Karlson and Ziebarth, 2018; White, 2017) and/or on primary care visits 

or hospital admissions related to specific disease categories (Fritz, 2022; Masiero et al., 2022; 

Rizmie et al., 2022). Our paper adds to this literature by estimating the impact of temperature 

on morbidity in England, a country with a temperate maritime climate and relatively mild 

temperature extremes1. The aim is to investigate if similar effects of temperature on morbidity 

are present in countries with milder climates as have been shown to exist in hotter countries. 

Considering the temperature-morbidity relationship in temperate climates is important, as the 

greatest overall temperature increases from climate change are expected to occur in northern 

latitudes (Beusch et al., 2022;  IPCC, 2021). In addition, the impacts of extreme temperatures 

on health outcomes in milder climates are likely to be distinct from those observed in locations 

with more extreme temperatures, given longer-term adaptation to existing climates (Carleton 

and Hsiang, 2016; Heutel et al., 2021). Estimating such impacts in countries such as England 

 
1 Whereas previous studies on temperature and morbidity tend to be based in regions with relatively hot 
climates, the highest daily maximum temperature in our sample is just 32.8oC (91.0oF). In fact, daily maximum 
temperatures only exceed 30.0oC (86.0oF) on 14 occasions in our data, representing fewer than 0.1% of days in 
the sample. In contrast, for Karlson and Ziebarth’s (2018) study based in Germany, approximately 2.5% of days 
exceeded 30.0oC.  Similarly, in White’s (2017) study, which uses daily mean temperatures and is based on data 
from California, the top temperature bin of 26.7oC (80.0oF) or above accounts for 6% of the sample. In our data, 
the daily mean temperature never exceeds 24.5oC (76.1oF). 
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therefore represents an important contribution to our understanding of the overall costs of 

climate change. These estimates can, for example, help to inform revisions to the estimated 

social cost of carbon (SCC), a crucial value underpinning climate policies in many parts of the 

world, and an input to cost-benefit analyses for investments and policies valued in the trillions 

of US dollars (Aufhammer, 2018; Carleton and Greenstone, 2021; Millner and McDermott, 

2016). Existing estimates of the SCC have been widely critiqued on various grounds, 

particularly in relation to so-called ‘damage functions’ that translate temperature changes into 

economic losses. Our study contributes new empirical evidence on important regional 

heterogeneity in climate impacts, as well as on non-linearities in the relationship between 

temperatures and human well-being, which have been highlighted as important omissions in 

existing SCC estimates (Carleton and Greenstone, 2021). Our estimates can also be used more 

directly by policymakers locally to inform healthcare provision planning, and to predict likely 

spikes in demand for healthcare services during future extreme weather episodes.  

As well as providing a more complete picture of the overall effects of climate on human health, 

analysing morbidity also presents an opportunity to develop a deeper understanding of the 

channels or mechanisms through which health is impacted by extreme temperatures. For 

example, adaptation behaviours are an important mechanism in mediating the biological 

relationship and, as a result, a critical challenge in assessing the human health threats posed by 

climate change is the degree to which “adaptation is possible” (Deschenes, 2014). However, it 

is not generally well understood why some populations adapt so effectively in some dimensions 

of climate, while entirely failing to adapt in other contexts, and this remains a critical research 

challenge (Carleton and Hsiang, 2016). In this context, a second aim of this paper is to consider 

the likely role of behavioural responses to extreme temperatures in countries with milder 

climates. In particular, it focuses on potential short-term defensive/avoidance adaptive 

behaviours that may help mitigate the health impacts of extreme temperature events. Again 
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here the setting of our study is significant, as the short-term behavioural responses to weather 

variation are likely to be distinct in the context of a milder climate, such as England, where for 

example heat-waves have often been portayed as good news stories2.  

To address these aims, we combine data on accident and emergency (A&E) attendances for 

429 hospitals in England over the period 2010-2015 with weather data based on hospital 

locations to analyse the temperature-morbidity relationship. We employ a distributed lag 

regression model that includes hospital, region-by-week, and region-by-year fixed effects and 

find that while higher temperatures are associated with significant increases in hospital 

attendances, there are distinct and noteworthy effects evident across the temperature 

distribution. In particular, while cold weather is associated with lower A&E attendances in the 

same week, this effect appears to be due to the postponement of visits to subsequent weeks. In 

contrast, for hotter temperatures, we find evidence of substantial increases in weekly A&E 

attendances that are not offset by reductions over subsequent weeks. 

Overall, this paper makes two specific contributions to the literature. First, our analysis shows 

that hotter temperatures significantly impact morbidity even in countries with relatively milder 

climates. In particular, we find net increases in overall A&E attendances at lower levels of hot 

temperature than in previous studies for hotter countries and regions, perhaps reflecting a 

relative lack of adaptation to heat in our context. This finding has major implications for our 

current understanding of the health impacts of climate change, illustrating the potentially 

significant negative health consequences of climate change for countries with cooler climates, 

many of which are located in regions currently projected to face significant temperature 

increases (Beusch et al., 2022; IPCC, 2021). 

 
2 See, for example, https://www.mirror.co.uk/news/uk-news/uk-weather-met-office-delivers-26665166 
(accessed 28/04/2022). 
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Second, our results across the temperature distribution are consistent with differences in 

individual-level behavioural responses and adaptation to extreme cold and hot temperatures in 

England. In particular, we show that while individuals may be engaging in self-protecting 

behaviours to mitigate the health consequences of cold temperatures, this does not appear to be 

the case for hot temperatures. This finding highlights the importance of local climate in 

determining behavioural responses to weather events and also highlights important differences 

in adaptation across countries. For example, our results suggest that England's population is 

better adapted to colder temperatures, in comparative terms, likely in part because of their 

generally milder climate. 

The rest of this paper is organised as follows: Section 2 discusses the relevant extant literature, 

Section 3 describes the data, and Section 4 outlines the empirical strategy. Section 5 presents 

and describes the main results, while Section 6 discusses the possible behavioural mechanisms 

underpinning our findings. Finally, Section 7 concludes.  

 

2. LITERATURE 

There is a growing body of literature in economics that exploits random fluctuations in local 

weather to identify the effects of climate on a range of socio-economic outcomes including, for 

example, conflict, crime, agricultural output, labor productivity, and health3. Specifically in 

relation to health, this literature has for the most part focused on the effects of extreme 

temperatures on mortality (White, 2017). For example, Deschenes and Greenstone (2011) 

found that days with mean temperatures above 90°F (32.2°C) and below 40°F (4.4°C) were 

associated with increases in mortality in the US. Comparable ‘U-shaped’ results were also 

identified in Barreca (2012), also for the US, and in Karlsson and Ziebarth (2018) for Germany. 

 
3 See for example Dell et al. (2014) and Carleton and Hsiang (2016) for extensive reviews of this literature, and 
Hsiang et al. (2017) for an application of this empirical evidence to valuing the damages from climate change.  
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In a recent study using Italian data, Masiero et al. (2022) found that only hotter temperatures 

had a significant effect on mortality, with the effects of cold temperatures being insignificant4.  

In contrast, the relationship between temperature and morbidity has received much less 

attention from economists, with some notable recent exceptions. For example, White (2017) 

examined the dynamic relationship between temperature and morbidity using emergency 

department (ED) visits in California, finding both extreme cold and hot days to be associated 

with net total increases in visits over a 31-day cumulative window. Similar U-shaped 

relationships were also found for hospital admissions in Germany by Karlsson and Ziebarth 

(2018) and in China by Agarwal et al. (2021), although the latter found extremely cold 

temperatures (less than -6oC) had no effect on admissions. In contrast, Fritz (2022) found no 

evidence of a U-shaped relationship between temperature and daily visits to primary care 

facilities in Indonesia, though all-cause and non-communicable disease related visits increased 

substantially on days where the temperature exceeded the average. In addition, Masiero et al. 

(2022) found no evidence of morbidity effects from temperature when measured in absolute 

terms in Italy. However, similar to their mortality findings, when using relative measures of 

temperature, their results showed that extreme temperatures (both hot and cold) exerted 

significant effects on morbidities from specific conditions i.e. emergency admissions for 

cardiovascular and respiratory illnesses.  

Importantly, whereas these previous studies have tended to be based on data from countries 

with hotter climates where temperature extremes occur more frequently, our study investigates 

the effect of temperature on morbidity in a country, England, with a relatively mild climate that 

experiences fewer and less extreme hot temperatures. This is both novel and important. 

 
4 However, using relative measures of temperature (deviations from local averages), Masiero et al. (2022) did 
find that extremes of both hot and cold temperatures – relative to the local climate – significantly affected 
mortality. This finding is suggestive of local adaptation to existing climates, a point we return to later in this 
section.  
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Previous studies have found significant regional heterogeneity in the temperature-mortality 

relationship (Heutel et al., 2021), while regional heterogeneity of impacts, and non-linearities, 

have been highlighted as important empirical gaps in assessments of the overall damage costs 

from climate change (Carleton and Greenstone, 2021). In addition, with the exception of White 

(2017), most of the other studies mentioned here measure morbidity outcomes using hospital 

admissions data, which may be affected by capacity constraints on the supply side. Our 

outcome measure, which is based on all-cause A&E attendances, is more likely to capture the 

totality of morbidity effects, as well as the influence of any mediating factors such as 

behavioural or adaptive responses to extreme temperatures. 

The health impacts of climate have also been investigated from other perspectives in related 

disciplines. In particular, the relationship between extreme temperatures and health has been 

widely considered in the public health/epidemiology literature, including both mortality 

impacts (Braga et al., 2001; Fouillet et al., 2008; Kalkstein and Greene, 1997; Ye et al., 2001) 

and morbidity effects (Ebi et al., 2004; Morabito et al., 2005; Schwartz et al., 2004)5. 

Specifically for the UK, a number of studies in this literature have investigated the link between 

extreme temperatures and health outcomes, with several papers demonstrating a U-shaped 

relationship between temperature and mortality (Gasparrini et al., 2022; Hajat et al., 2006; 

Hajat et al., 2014)6. There are also a handful of studies in this literature that examine the link 

between temperature and morbidity from an epidemiological perspective, using UK data. Here, 

however, the findings are less conclusive. Two older studies found no association between 

temperature and emergency hospital admissions, specifically in the context of a heat-wave in 

Birmingham (Ellis et al., 1980) and for London (Kovats et al., 2004)7. Two more recent studies, 

 
5 McMichael et al. (2006) provide a comprehensive review of the climate-public health literature.  
6 In a related study, Iparraguirre (2015) demonstrated that ‘winter fuel payments’ accounted for almost half the 
reduction in excess winter mortality in England and Wales from 1999/2000 to 2012. 
7 The latter study did find an increace in emergency hospital admissions for specific disease catgories (i.e. 
respiratory and renal illnesses) amoung vunerable sub-populations (i.e. <5yrs and 75yrs+). 
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in contrast, found positive associations between temperatures and morbidity outcomes; for all-

cause A&E attendance in London (Corcuera Hotz and Hajat, 2020) and for emergency hospital 

admissions in England for six specific temperature-sensitive illneses (Rizmie et al., 2022). 

In summary, the existing economics literature on the morbidity impacts of extreme 

temperatures have mainly studied these effects for countries with relatively hot climates and 

more frequent temperature extremes. In the public health/epidemiology literature, there have 

been a small number of studies on morbidity effects of extreme temperatures based on UK 

data, but these have either been limited in geographic scope (to individual cities)8, or focused 

on outcome measures that capture a sub-set of the overall morbidity effects and behavioural 

responses to extreme weather. While studies focusing on specific illnesses are important to 

understand biological pathways between temperature and morbidity, understanding the overall 

morbidity effects of temperature, as well as the influence of any mediating factors such as 

behavioural or adaptive responses, is key in both estimating the costs of climate change and in 

planning for healthcare service delivery. Thus, our paper is complementary to the existing 

literature discussed here and aims to fill this specific knowledge gap. 

In addition, there are also a number of related strands of the empirical climate economics 

literature that focus on alternative outcome measures related to human well-being. 

Temperature, in particular, has been shown to exert significant influence over various 

dimensions of human well-being, including birth weight (Deschenes et al., 2009), cognitive 

attainment (Graff-Zivin et al., 2018), physical performance (Sexton et al., 2022), and sentiment 

(Baylis, 2020). A related strand of the literature relates to the mental health impacts of extreme 

temperatures. For example, Mullins and White (2019) found that higher temperatures increase 

 
8 The limited geographical scope of these studies may raise issues about the generalisability of their results, in 
particular in relation to the representativeness of the overall effect of temperaure on morbidity in milder climates 
such as England. This could be due to differences in demographics between urban and rural areas, for instance, 
or the relative concentration of extreme heat events in larger urban areas, such as London.  
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ED visits for mental illness, suicides, and self-reported days of poor mental health in California. 

Other studies have shown increases in suicide rates in response to higher temperatures in the 

US and Mexico (Burke et al., 2018), and in India, where the effects appear to operate via the 

impact of temperature on agricultural yields (Carleton, 2017). Elsewhere, higher temperatures 

have been shown to be associated with decreases in self-reported mental health (Obradovich et 

al., 2018).  

In terms of behavioural responses, the temperature-mortality literature has generally 

considered longer-term adaptations, with several studies focussing on the role of air 

conditioning. For example, Deschenes and Greenstone (2011) and Barreca (2012) showed 

increases in residential energy use linked to air conditioning as temperatures increase, while 

Barreca et al. (2016) found that much of the improvement in the temperature-mortality 

relationship in the US over the last century was attributable to the adoption of air conditioning. 

Other studies have highlighted the role of migration as an adaptive response (Deschenes and 

Moretti, 2009). Heutel et al. (2021) demonstrated substantial variation across regions of the US 

in the temperature-mortality relationship, with the mortality effects of extreme heat being 

significantly higher in cold regions relative to warm regions. Similarly, the findings in Masiero 

et al. (2022), mentioned previously, that relative deviations in temperature have stronger effects 

on health than absolute temperatures, is suggestive of longer-term adaptation to local climates. 

The factors driving this heterogeneity across climate regions, however, remain unclear. 

In contrast to these longer-term adaptation responses, relatively few studies have considered 

short-term behavioural responses to extreme temperatures. There is, however, a related 

literature on health and air quality, where the role of ‘avoidance behaviors’ has been 

considered. For instance, Neidell (2009) shows that hospital attendances decrease on days 

where air quality is forecast to be unhealthy, likely driven by avoidance behaviors. Moreover, 

studies using instrumental variables (IV) further demonstrate the role of avoidance behaviours 
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in biasing OLS estimates of the health impacts of pollution towards zero. For example, Moretti 

and Neidell (2011) use the timing of Port of Los Angeles traffic and distance to the port as an 

instrument for ozone, finding IV results that are much larger than the OLS equivalent, 

suggesting the presence of avoidance behavior. Similarly, Knittel et al. (2016), using random 

traffic shocks as instruments for bad air quality, find a large and statistically significant effect 

of air pollution on infant mortality. However, Graff-Zivin and Neidell (2009) demonstrate a 

dynamic response whereby behavioural changes to smog alerts depend in part on the prior 

history of such alerts. Specifically, individuals appear quite responsive to alerts on the first day 

they are issued, but much less so on subsequent consecutive days.  

Focusing on general behavioural responses to temperature, Graff-Zivin and Neidell (2014) 

investigated the relationship between temperature and time-use in the US, finding an increase 

in time devoted to indoor leisure at the expense of outdoor leisure in response to both extreme 

hot and cold weather. They also found decreased time devoted to labour among weather-

exposed workers. However, while such responses can influence the relationship between 

temperature and morbidity, they are not necessarily self-protecting in nature. For instance, 

White (2017) highlighted the potential role of behaviour in mediating the dynamic relationship 

between temperature and morbidity, noting behavioural responses are unlikely to be influenced 

only by individuals’ expected health and that it is possible that behavioural responses may be 

utility enhancing yet damaging to health.  

Undertanding these behavioural responses is important in estimating the cost of extreme 

temperature events and climate change. For example, Janke et al. (2009) notes “the extent to 

which we can use our estimates to quantify the effects of a change in pollution depends on 

whether individuals are likely to take actions to protect themselves from increases in pollution 

levels”. If individuals do engage in protective behaviors, estimates of health impacts of external 

health threats, such as extreme temperatures, will have a downward bias i.e. empirical studies 
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will tend to under-state the true effects of (unanticipated) temperature shocks on morbidity. On 

the other hand, especially in the case of extreme temperatures, short-run behavioural responses 

could in some cases increase an individual’s exposure to temperature, leading to upward biased 

estimates of health effects. Therefore, a somewhat overlooked question in the literature to date 

is the role of short-run behavioural responses in mediating the temperature-morbidity 

relationship, and the relationship between health and temperature more broadly. Thus, this 

study also aims to address this gap in the literature by examining the potential role of 

behavioural responses in mediating the temperature-moribidity relationship in the context of a 

relatively mild climate.  

 

3. DATA 

To analyse the temperature-morbidity relationship in England, we combine publicly available 

data on A&E attendances from National Health Service (NHS) England with regional 

population data from StatWales and weather data from the Centre for Environmental Data 

Analysis (CEDA). This section describes each of these data sources and the relevant variables 

in more detail. 

 

3.1 A&E Attendances 

We use A&E Attendances and Emergency Admissions data from NHS England that contains 

the near-universe of all A&E attendances for both public and private health providers in 

England, including NHS Trust, NHS Foundation Trust, and independent sector organisations 

(NHS, 2022). In particular, we analyse data on weekly A&E attendances at 429 unique A&E 

treatment facilities across England over the period from November 2010 to July 2015. The 

analysis focuses on A&E attendances, since these are likely to better capture the effects of heat-



12 
 

related health shocks. Other health outcomes, such as hospital admissions, are likely to also be 

affected by factors such as the number of available beds, which may be lower during periods 

of extreme temperatures due to excess demand for health services. In addition, A&E 

attendances also account for less severe and more easily treatable heat-related morbidity that 

do not require hospitalisation but are nonetheless important. 

The primary outcome of interest in our analysis is the weekly A&E treatment facility 

attendance rate per 100,000 regional population, with the location of each treatment facility 

matched to one of nine strategic health regions in England. The regional population data is 

taken from StatWales and based on mid-year population estimates of local authorities by year, 

aggregated to the regional level (StatWales, 2022). A&E attendance rates, the primary outcome 

of interest in our analysis, are calculated by dividing the number of weekly A&E attendances 

at a treatment facility by its regional population. Table 1 presents descriptive statistics for A&E 

attendances for our balanced panel of 156 treatment facilities (for more details, see below). 

Overall, the mean weekly A&E treatment facility attendance rate was 34.9 per 100,000 regional 

population from a total of 76.7 million A&E attendances over the period. A breakdown in total 

attendances by region is also presented. 

 [Insert Table 1 about here] 

One important caveat to note here relates to changes in the number of treatment facilities each 

week over the study period in our data (see Figure A1.1 in Appendix 1), which is driven by 

two factors. First, only healthcare facilities with A&E attendances averaging more than 200 

attendances per month are included in the NHS data, leading to variation in the number of 

treatment facilities per period. Second, there is also some attrition caused by organisational 

changes in the public health system in England during the period (including hospital mergers 

and hospital trust reorganisation) that led to the closure of some private healthcare facilities. 

To address and consider the likely impact of these issues for our analysis, we present estimates 
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from models using balanced panels (i.e. including only hospitals with observations for all 

periods) as our main results, but also present results using an unbalanced panel as a robustness 

check. This implies we use data on 156 A&E treatment facilities in the balanced panel analysis 

and 429 in the unbalanced panel analysis. 

 

3.2 Weather Data 

To assess the impact of temperature on A&E attendances, we match the NHS provider-level 

A&E weekly attendance rates with weather data based on a treatment facility’s location within 

a strategic health region and the end date of weekly A&E records. The weather data is taken 

from CEDA’s HadUK-Grid Climate Observations by Administrative Regions over the UK 

dataset (Met Office et al., 2021). HadUK-Grid is a collection of gridded climate variables 

derived from the network of UK land surface observations and the data have been interpolated 

from meteorological station data onto a uniform grid, providing complete and consistent 

coverage across England at 1km resolution. The gridded data are produced for daily, monthly, 

seasonal, and annual timescales, and the primary purpose of these data are to facilitate 

monitoring of UK climate and research into climate change, impacts, and adaptation. The 

HadUK-Grid includes information on maximum temperature (degrees Celsius) and 

precipitation (millimetres), which are used in this paper, though it does not provide daily 

measures of humidity. A previous study by White (2017) found that the inclusion of humidity 

did not alter the results. 

Table 2 presents definitions and descriptive statistics for the temperature variables used in our 

analysis i.e. ten separate weekly maximum temperature indicator bins. For example, the lowest 

temperature bin [1oC, 4oC) takes a value of 1 if the highest daily maximum temperature in a 

given week is greater than or equal to 1oC but less than 4oC. Subsequent bins increase in 3oC 
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intervals to the highest temperature indicator [28oC, ), which takes a value of 1 if the highest 

daily maximum temperature in a given week is greater than or equal to 28oC. In other words, 

these variables are defined on the basis of the maximum of the seven daily maximum 

temperature observations for a given region-week. Overall Table 2 shows that the two highest 

temperature bins, [25oC, 28oC) and [28oC, ), account for approximately 7.6% of weekly 

maximum temperatures, while the two lowest bins, [1oC, 4oC) and [4oC, 7oC), account for 

4.1%. The modal bin is [10oC, 13oC), accounting for 20.4% of weekly maximum temperatures. 

[Insert Table 2 about here] 

Furthermore in relation to temperatures, and as a complement to the data in Table 2, Figure 1 

presents the distribution of daily maximum temperatures at regional-level for England over the 

study period. It highlights that extreme temperatures are relatively rare in England at present, 

with a bimodal distribution centred around 10oC and 17oC. 

[Insert Figure 1 about here] 

Finally, in addition to the temperature data, we also include variables relating to weekly 

precipitation to act as controls in our models. In particular, we construct variables for four 

separate 10mm rainfall bins, defined as a count of the number of days in a given week with 

rainfall levels falling into various bins (summary statistics not presented but available from the 

authors on request).  

 

4. EMPIRICAL APPROACH 

Our empirical analysis aims to estimate the effect of temperature in a given week 𝑡 on A&E 

attendance rates in the same week, as well as in subsequent weeks 𝑡 + 1, 𝑡 + 2, and 𝑡 + 3. To 

do so, we follow closely the approach of White (2017) and employ a distributed lag regression 

model whereby the weekly A&E attendance rate is regressed on the contemporaneous weekly 
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temperature and three weekly temperature lags. Defining 𝐴&𝐸_𝑅𝑎𝑡𝑒!,#,$ as the A&E attendance 

rate for treatment facility i located in region 𝑟 in week 𝑡, the specification of our main model 

is given by: 

𝐴&𝐸_𝑅𝑎𝑡𝑒!,#,$ = 	𝛼 +--𝛽%,$&'𝑇𝑒𝑚𝑝%,#,$&'

(

')*

+--𝛾%,$&'𝑃𝑟𝑒𝑐𝑖𝑝%,#,$&'

(

')*

(

%)+

,

%)+

+ 𝛿-./!01&2..3 + 𝛿-./!01&4.5# + 𝛿6#.5$_859!:!$; + 𝜖!,#,$ 

[1] 

where the main explanatory variables of interest, 𝑇𝑒𝑚𝑝%,#,$&', are the weekly maximum 

temperature indicator bins defined in Table 2 and their lags. The omitted temperature category 

in our model is the 10-13oC bin9, implying the estimated coefficients 𝛽%,$&' represent the 

marginal effect of a week with maximum temperature in bin j relative to a week with maximum 

temperature in the range 10-13oC. Controls for weekly precipitation 𝑃𝑟𝑒𝑐𝑖𝑝%,#,$&', including 

lags, are also included in the form of 10mm rainfall bins, with the 0-10mm bin omitted. Given 

the nature of our weather data, standard errors are clustered at the region level. 

The model in Equation [1] allows us to estimate a range of different effects. First, the 

‘contemporaneous effect’ 𝛽%,$ represents the impact of a weekly maximum temperature bin 𝑗 

on A&E attendances in the same week, controlling for weekly maximum temperatures for 

every other week in the 4-week period. Second, the ‘cumulative effect’ measures the total effect 

of a temperature bin i.e. the impact on both current and subsequent A&E weekly attendances. 

It is calculated as the sum of all coefficients (including lags) for each temperature bin, 

∑ 𝛽%,$&'(
')*  , and captures the total ‘net effect’ of temperature on A&E attendances over four 

 
9 A variety of omitted bins have been used in the literature, depending on the context of each region or country’s 
underlying climate. For example, White (2017) omitted the 60-65oF (15.6-18.3oC) temperature bin for 
California, Karlsson and Ziebarth (2018) omitted the 40-50oF (4.4-10oC) bin for Germany, while Agarwal et al. 
(2021) omitted the 9-12oC bin for China. As noted in Agarwal et al. (2021), the literature generally uses the 
ideal or most comfortable temperature as the reference group and we have chosen the modal 10-13oC bin. Our 
results and findings are robust to alternative base categories.  
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weeks. Third, the pattern of the dynamic relationship between temperature and A&E 

attendances over the 4-week period can also be considered using the separate lagged 

coefficients and their linear combinations. 

In terms of identification, our strategy relies on the inclusion of a comprehensive set of fixed 

effects in our distributed lag model. First, it is necessary to account for the fact that both A&E 

attendances and weather are likely to vary together seasonally and our model includes a set of 

region-by-week (𝛿+,-!./&0,,1) fixed effects. This allows seasonality to vary at a relatively 

fine scale (weekly) and for seasonality effects to vary by region, which is important if changes 

in health are driven by behaviour (White, 2017). In addition, these fixed effects control for 

differences in the climate across England and thus capture any potential correlation in the 

seasonality of both weather and health across regions. 

We also include region-by-year (𝛿+,-!./&2,3#) fixed effects in our model. This controls 

flexibly both for annual factors across England and annual factors that vary by region including, 

for example, variations in regional health policy or demographic changes. The region-by-year 

fixed effects are particularly important for identification in our model, as health policy varies 

significantly across each of our nine regions. For example, London saw a much greater level 

of attrition among treatment facilities during our sample period compared with other regions 

(see Figure A1.2 in Appendix 1). While we restrict attention in our main analysis to a balanced 

panel (i.e. only including facilities that are present throughout the sample period), the closure 

of treatment facilities within a given region could nonetheless increase demands on all other 

healthcare facilities in the same region. We also include treatment facility fixed effects 

(𝛿4#,3$_637!8!$9) to account for any time-invariant differences across observational units in 

A&E attendance rates. 
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Finally, it is important to note that our empirical strategy faces some limitations as a result of 

data availability. For example, we do not include day-of-the-week effects and national holiday 

controls since our A&E attendance records are aggregated at a weekly level. However, since 

weather is independent of both the day-of-the-week and national holidays conditional on our 

seasonal controls, the exclusion of these controls does not necessarily threaten identification, 

but is likely to decrease the precision of our estimates.  

 

5. RESULTS  

5.1 Main Results 

In this section we present the results of our empirical analysis. To begin, the results from our 

preferred specification are presented in Table 3 in the form of contemporaneous and cumulative 

effects and are based on the model presented in Equation [1]10. While the estimates are reported 

in levels in the tables, much of the subsequent discussion focuses on percentage changes for 

ease of interpretation. These are calculated by dividing the relevant estimated coefficient (or 

sum of coefficients) by the mean weekly attendance rate. For example, the interpretation of the 

contemporaneous effect for the [22oC, 25oC) temperature indicator bin – see Column (1) of 

Table 3 – is as follows: a week with a maximum temperature greater than or equal to 22oC but 

less than 25oC is associated with 2.26 additional A&E attendances per 100,000 individuals, 

relative to a week with maximum temperature in the [10oC, 13oC) base category range. The 

percentage change is then calculated by dividing the estimated coefficient by the mean weekly 

A&E attendance rate (34.87 attendances per 100,000 individuals), giving an estimated 6.5% 

 
10 Additional specifications and results are reported as robustness and placebo tests in Appendices 2-7 and 
discussed below in Section 5.2.  
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increase in weekly A&E attendances (2.26/34.87=6.5%). 

[Insert Table 3 about here] 

Taking the estimates of contemporaneous effects first, the results reported in Column (1) 

indicate significant effects of temperature variation on A&E attendance rates in England. They 

also suggest a contrast in the effects of low and high temperatures, with negative coefficients 

(i.e. reductions in A&E attendances) estimated for cold temperature bins, and positive 

coefficients (i.e. increases in A&E attendances) estimated for higher temperature bins. The 

results in Column (1) also show a monotonic increase in the magnitudes of the estimated 

contemporaneous effects.  

These results seem to indicate that population health in England benefits considerably from 

colder weather. For example, the estimated contemporaneous effect of the [1oC, 4oC) 

temperature indicator bin suggests a 4.3% decline in A&E attendances, relative to the omitted 

[10oC, 13oC) category. However, the results in Column (2), which account for the cumulative 

effect on hospital attendance rates up to three weeks after the weather shock, indicate that the 

initial decline in attendance is offset in the subsequent weeks; the cumulative effect of the [1oC, 

4oC) temperature indicator bin is positive, though not statistically different from zero. A similar 

pattern is found for each of the other colder temperature indicator bins, up to 10oC. 

In contrast, hotter temperatures are associated with increases in A&E attendances that persist 

up to three weeks after the shock. For example, weekly maximum temperatures in the [25oC, 

28oC) range are associated with a contemporaneous increase of 7.6% in A&E attendances that, 

if anything, intensifies slightly in subsequent weeks, with a net total increase of 8.6%.  The 

highest temperature indicator bin [28oC, ) is associated with a 7.9% increase in A&E 

attendances and a net total effect of 7.5% over four weeks. 

Our main results are summarised visually in Figure 2. First, Panel (A) displays the percentage 
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contemporaneous effect of each of the weekly maximum temperature indicator bins, showing 

a near linear relationship between temperature and contemporaneous weekly A&E attendances. 

In contrast, Panel (B) displays the percentage cumulative effect over a four-week period for 

each of the temperature bins, showing statistically significant effects only for higher 

temperature bins. In particular, we find no evidence of a statistically significant effect of colder 

temperatures on A&E attendances when allowing for the effects of the cold weather shock to 

play out over a period of four weeks11. On the other hand, for hotter temperatures, Panel B 

illustrates a net total increase (over the 4-week cumulative period) for weekly maximum 

temperature in the ranges [16oC, 19oC) and above. This is a similar pattern to the 31-day 

cumulative effects found in California (White, 2017), where temperatures in the ranges 75-

80oF (23.8-26.7oC) and 80+oF (26.7+oC) are associated with net total increases in ED 

attendances. Notably, however, we find net increases in A&E attendances in our data at 

relatively low levels of temperature, perhaps reflecting a relative lack of adaptation to heat in 

our context. The magnitudes of the net (cumulative) effects that we estimate appear to be 

somewhat larger than those found in White (2017) and other studies. In addition, the overall 

shape of the estimated relationship here also differs somewhat from the U-shaped relationship 

generally found in the temperature-mortality (Barreca, 2012; Barreca et al., 2016; Deschenes 

and Greenstone, 2011) and temperature-morbidity literatures (Karlsson and Ziebarth, 2018; 

White, 2017). In particular, in our context, we find the relative size of the effect of a week with 

very hot temperatures is larger in magnitude than the effect of a week with very cold 

 
11 While the estimated cumulative effect for the coldest temperature bin in our data is not statistically different 
from zero, it is positive and ‘practically significant’. The non-statistical significance may be, in part, due to a 
lack of statistical power as a result of relatively few observations in this temperature bin in our data. Thus, 
overall we conclude there is inconclusive evidence of an effect at the lowest temperatures. 
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temperatures, which is also much less precisely estimated. 

 [Insert Figure 2 about here] 

The analysis so far has focused on summarising the dynamic relationship between temperature 

and morbidity by reporting the contemporaneous and cumulative effects. However, it is also 

informative to consider the nature of the dynamic relationship over the 4-week window that we 

study and Figures 3 and 4 illustrate how A&E attendances are affected in the weeks following 

a temperature shock12. In each figure the dynamic association at relatively cold temperatures, 

i.e. the [1oC, 4oC) temperature indicator bin, is presented in Panel (A), while the same dynamic 

association for our hottest temperature category, the [28oC, ) temperature indicator bin, is 

presented in Panel (B). Figure 3 plots the estimated effects (reported in percentages, as 

described previously) for each week, with the contemporaneous effect represented by 𝑡 = 0 on 

the x-axis. Figure 4, on the other hand, plots the sum of all effects (again reported in 

percentages) up to and including the relevant lag. For example, the point corresponding to one 

week after the temperature shock represents the sum of effects on contemporaneous 

temperature and the first temperature lag. 

[Insert Figures 3 and 4 about here] 

Starting with Panel (A) of Figures 3 and 4, the contemporaneous decline in A&E attendances 

for colder temperatures is clearly illustrated (note that the estimates at 𝑡 = 0 are equivalent 

across both figures). Figure 3 illustrates that this initial decline in attendances for weeks with 

cold temperatures is followed by increases in A&E attendances in subsequent weeks, while 

Figure 4 demonstrates how this translates into total net changes in A&E attendances over the 

4-week period. The initial decline in A&E attendances for weeks with cold temperatures is 

compensated by subsequent increases in attendances, such that the net effect is statistically 

 
12 These figures mimic the presentation of results in White (2017) to facilitate comparison of our findings with 
existing literature in a different climate context.  
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indistinguishable from zero in the weeks after the initial cold temperature shock. 

Turning to Panel (B) of Figures 3 and 4, where we focus on the hottest temperature bin, we see 

a large contemporaneous increase in A&E attendances followed by a much smaller but still 

statistically significant increase in the week following the hot temperature shock. In the 

subsequent two weeks the estimated coefficients are slightly negative but not statistically 

different from zero. Figure 4 shows how these weekly coefficients translate into net total A&E 

attendances over the 4 weeks. In contrast to the pattern observed for cold temperatures, the 

initial increase in A&E attendances for weeks with high maximum temperatures is not 

compensated by subsequent declines. In fact, we observe a compounding effect initially, as the 

net increase in A&E attendances following the hot weather shock is actually larger one week 

after the initial temperature shock. Over the subsequent two weeks the net effect declines 

somewhat, but remains positive and statistically significantly different from zero. 

This pattern of effects for hotter temperatures on morbidity is similar to that observed by White 

(2017) for ED visits in California, albeit with some apparent differences in the level of hotter 

temperatures associated with increased A&E attendance in our study, as noted previously. 

However, this pattern of effects is quite distinct from the dynamic observations in several 

previous temperature-mortality studies. Essentially, the literature on temperature and mortality 

has found evidence of ‘harvesting’, whereby an initial increase in mortality is offset by 

subsequent decreases, as the temperature shock brings forward by a short interval the mortality 

of some vulnerable persons (Armstrong, 2006; Basu and Samet, 2002; Braga et al., 2001; 

Deschenes and Moretti, 2009). Harvesting has also been found to play a role in the relationship 

between extremely hot temperatures and hospital admissions for heart diseases (Schwartz et 

al., 2004). We find some modest evidence of harvesting as the total estimated net effect of a 

hot temperature shock (after 3 weeks) is smaller than the peak effect (after a week) and 

somewhat smaller than the contemporaneous effect, as demonstrated in Panel (B) of Figure 4. 
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However, the net effect of a hot weather shock on A&E attendance remains substantial after 

three weeks, indicating that the contemporaneous effects are not being driven by harvesting. 

 

5.2 Robustness and Placebo Tests 

In order to test the sensitivity and robustness of our results and findings, we also estimated a 

range of additional models and the results from these are presented in Appendices 2-6 and 

briefly summarised here. First, in Appendix 2, we present estimates using the unbalanced panel, 

which uses all available data on 429 A&E treatment facilities. Second, in Appendix 3, we 

present results from a model that applies analytical weights based on the average number of 

A&E attendances per treatment facility in our sample period. Third, in Appendix 4, we 

aggregate A&E attendances from hospital to broad regional level and present results from a 

regional model where the dependent variable is regional A&E attendances per 100,000 

population. Fourth, in Appendix 5, to address the possibility that annual population levels may 

be endogenous with respect to temperature, we used lagged population values as the 

denominator in the calculation of our dependent variable. Fifth, in Appendix 6, we present 

results from a model employing a set of weekly maximum temperature count bins, as opposed 

to indicator bins, as the main independent variables of interest. Across all these additional 

analyses we found that our main results and conclusions were robust and qualitatively 

unchanged. 

Finally, in Appendix 7, we also present results from a placebo test that adds a single 

temperature ‘lead’ to the model presented in Equation [1]. In particular, we present the 

estimated weekly effects for extreme cold (lowest) and extreme hot (highest) temperature bins 

from this model and, in both cases, the results show no evidence of a significant change in 

hospital attendances in the week prior to an extreme temperature occurrence. This is as 
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expected and lends some support to a causal interpretation of our results. 

 

6. BEHAVIOURAL MECHANISMS  

How do we reconcile and interpret these contrasting results across the temperature distribution? 

In this section, we discuss the possible behavioural mechanisms that could underpin the 

contrasting dynamic relationship between the extremes of heat and cold, and A&E attendances, 

that we observe in our data. A behavioural interpretation seems warranted here, particularly for 

the results on the effects of colder temperatures, where the initial decline in A&E attendances, 

followed by a compensating increase in attendances over subsequent weeks, seems difficult to 

reconcile with purely biological or physiological responses to cold weather.  

The estimated reductions that we observe in A&E attendances for weeks with colder weather, 

if driven by purely physiological responses, would suggest that cold weather is on average 

health improving at a population level, which seems unlikely13. Instead, it may be that the 

observed effects are driven primarily by behavioural responses to colder temperatures. This 

interpretation is reinforced by the findings in relation to the cumulative effects, which show 

that the initial reduction in A&E attendances during spells of colder weather is fully offset by 

increases in attendances in the subsequent weeks. In other words, the evidence is consistent 

 
13 It has been observed in some cross-sectional studies comparing locations around the world that extremes of 
cold can be associated with better health environments, since frosts can kill pathogens leading to a lower 
prevalence of some diseases (Kiszewski et al., 2004). However, these are likely much more long-term effects of 
climate on disease environments. For short-run variations in weather, such as the weekly temperatures we study 
here, it seems more plausible to expect that cold weather might be damaging to health, for example because 
extremes of temperature (either cold or hot) place additional strain on the human body (Van de Vliert, 2007). 
Cold snaps are generally associated with increases in mortality (Barreca, 2012; Deschenes and Greenstone, 
2011; Karlsson and Ziebarth, 2018), while in northern latitudes at least cold weather is also associated with ‘flu 
season’.  
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with A&E visits being postponed during bouts of cold weather – a kind of ‘reverse-harvesting’ 

effect. 

In this context, two distinct behavioural effects could plausibly be associated with the outcomes 

we observe. The first is changes in willingness or propensity to attend A&E in response to 

variations in the weather. The second is differences in the composition of activities that people 

engage in during periods of hot and cold weather. Taking the former effect first, any factor that 

increases the cost of treatment will tend to decrease the rate at which treatment is sought 

(White, 2017). This may include cold weather, if extremes of cold disrupt transport systems, 

or more generally if people experience disutility from going outside in colder weather. As a 

result, there may be a decreased willingness to seek treatment during periods of colder weather. 

This interpretation would be consistent with the idea of individuals delaying A&E visits during 

colder weather, and would seem to fit the pattern of results that we find in relation to the effects 

of cold weather on A&E attendances. 

The postponement of A&E attendances to periods with more favourable weather conditions 

might also help explain the observed increase in A&E attendances for hotter temperatures – in 

this case if people bring forward their attendance for treatment during warmer weather. Here, 

however, postponement cannot account for the totality of the results we observe at hotter 

temperatures. In particular, the monotonic increase in A&E attendance for progressively hotter 

temperature intervals seems unlikely to correspond to individuals preferring to attend for 

treatment as temperatures get progressively hotter. Similarly, if the results we find for hotter 

temperatures were largely due to temporal shifts in when people choose to seek treatment, we 

would expect to see initial increases in A&E attendances during periods of hotter weather offset 

by subsequent declines (as in the harvesting phenomenon observed in the temperature-

mortality literature). But this is not what we observe. If anything, the effect of hot weather on 

A&E attendance rates appears to intensify in the week after the hot weather shock and the 
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cumulative effect remains large and statistically significant three weeks after the initial 

temperature shock (as per Panel (B) of Figure 4).  

Instead, it seems more plausible that the effects of hotter temperatures that we observe reflect 

actual changes in morbidity. This likely reflects, at least in part, the well-documented 

physiological effects of heat, which are also widely cited as being behind the observed 

temperature-mortality relationship, particularly at the upper end of the temperature distribution 

(Barreca, 2012; Deschenes and Greenstone, 2011; Karlsson and Ziebarth, 2018). But genuine 

morbidity effects could also manifest in response to weather fluctuations as a result of the 

second behavioural effect that we consider – that is, if the overall composition of activities that 

people engage in changes in response to the weather.  

Previous research has shown that individuals’ time use responds significantly to the weather, 

with, for example, people found to substitute indoor activity for outdoor activity during periods 

of extremes of cold or hot weather (Graff-Zivin and Neidell, 2014) and levels of physical 

activity engaged in by adolescents found to increase modestly with temperature (Bélanger et 

al., 2009). While time spent outdoors and physical activity are widely acknowledged to be 

health promoting, at least in the medium to longer-term, the avoidance of these activities during 

periods of extreme temperatures might be thought of as health-preserving behaviour. Certainly 

it seems plausible that fewer accidents and physical injuries are likely to occur if people are 

spending more time at home and/or indoors (Kuitunen et al., 2020; Hampton et al., 2020). This 

postponement of activities could again be part of the underlying mechanism behind the results 

we observe in relation to the effects of cold weather on A&E attendance.  

For periods of hot weather, this behavioural effect seems less plausible given that we observe 

increases in A&E attendance during periods of hotter weather. The modest intensification of 

the effect of hot weather in the week after the temperature shock could be evidence of this type 

of postponement behaviour (of riskier activity), but it could equally be the result of symptoms 
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or illnesses caused by hotter temperatures in some cases not appearing until a week after the 

temperature shock14. 

Instead, it may be that in our context periods of hotter weather are associated with behaviours 

that are not health-preserving. Comparing the results that we observe for the dynamic 

relationship between extremes of heat and cold with A&E attendances suggests a differential 

behavioural response of individuals in England across the temperature distribution (as 

illustrated in Figure 2). It may be that these individuals are not engaging in health-preserving 

behaviours at the same rate for extremely hot temperatures as they do for extremely cold 

temperatures. Of course, this difference across extremes of heat and cold could partly be 

explained by the degree of longer-term adaptation to underlying climate conditions. For 

instance, individuals may be limited in their adaptive capacity due to current building standards 

being made to protect against cold weather but limited in terms of protection against the effects 

of extremely hot weather.  

An alternative, more behavioural explanation, may be that heatwaves often tend to be seen as 

‘good news’ stories in the UK. As a result, behavioural responses to hotter weather in this 

context may involve increased activities that lead to higher exposure to extremely hot 

temperatures (i.e. socialising, going to the beach, etc.), and an associated increase in accidents, 

physical injuries, and illness. Of course, one should note that such activities, despite being 

potentially damaging to health, may still increase an individual’s utility. 

The discussion in this section is somewhat speculative; given limitations in the available data, 

such as a lack of information on disease category or reason for attendance, we are unable to 

test explicitly the behavioural mechanisms that we propose here. However, we can conclude 

 
14 This might be more likely in our data given the aggregation to weekly observations. For example, if the 
maximum weekly temperature for week t happened to be on the last day of the week, this could conceivably 
show up in an increase in A&E attendances at the start of the following week (i.e. in week t + 1).  
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by suggesting that the dynamic relationship we observe between cold weather shocks and A&E 

attendances appears likely to be driven largely by behavioural responses to colder weather, 

leading to ‘missing’ or postponed attendances in the week of the cold weather shock. For 

periods with hotter weather, on the other hand, it seems more plausible that the effects we 

observe derive from a combination of direct physiological effects of heat and behavioural 

responses to hotter weather. Further research is required to investigate the extent to which these 

behavioural interpretations of our findings are supported by the data. 

 

7. CONCLUSION  

This paper investigates the relationship between temperature and morbidity using data on the 

near-universe of A&E attendances in England for the period 2010-2015. A number of recent 

studies have demonstrated a link between temperature and morbidity, mostly in countries with 

hotter climates and more frequent extreme temperatures, and our results show clear effects of 

temperature on morbidity in the context of a relatively mild climate. Specifically, we find that 

while cold weather is associated with lower contemporaneous A&E attendances, this effect 

appears to be largely attributable to displacement of A&E visits to subsequent weeks. In 

contrast, for hotter temperatures, we find evidence of substantial contemporaneous increases 

in weekly A&E attendances that are not offset by subsequent reductions. While some caution 

should be exercised in comparing estimates across studies, due to differences in variables and 

model specifications, our results nonetheless suggest net increases in overall A&E attendances 

at lower levels of hot temperature than in previous studies for hotter countries and regions, 

perhaps reflecting a relative lack of adaptation to heat in our context. In addition, our results 

are consistent with differences in individual-level behavioural responses to extreme cold and 

hot temperatures in England.  
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These findings highlight the potentially significant negative consequences of climate change 

for countries with cooler climates in terms of health outcomes and health system capacity. At 

a local level, our results can help to inform health service providers and planners in anticipating 

spikes in demand for emergency services during increasingly frequent episodes of extreme hot 

weather. More generally, our results have important implications for our understanding of the 

costs of climate change. We find significant health effects of even relatively modest levels of 

heat. In terms of magnitude, these effects also appear quite large, indicating a steeper dose-

response function between temperature and morbidity in the context of a relatively mild 

climate. In other words, our evidence points, perhaps unsurprisingly, to populations in milder 

climates being relatively less well adapted to heat. At the other end of the temperature 

distribution, our results suggest weaker effects of cold temperatures on health. Given 

anticipated increases in extreme temperatures, particularly in northern latitudes, our results 

suggest that without adaptation, more frequent heat waves are likely to result in substantial 

morbidity effects for populations currently living with relatively milder climates.  

Finally, we acknowledge some limitations with our data and analysis. First, we do not have 

information on a patient’s residential location, only where they were treated, necessitating 

analysis at hospital level as opposed to, say, local authority level. Second, unlike Karlson and 

Ziebarth (2018), we do not include data on pollutants in our analysis. It found that for cold 

temperatures, failure to account for air pollution results in downward bias, while for hot 

temperatures, it results in upward bias. However, the relationship and interactions between 

temperature, pollutants, and health outcomes is relatively complex and, we believe, unlikely to 

be fully captured by including pollutants as additional controls in our regressions. 
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Tables 
 

Table 1: Descriptive Statistics – A&E Attendances – Balanced Panel 

Variable Name Description Descriptive 
Statistics 

A&E_Rate Weekly A&E treatment facility attendance rate per 100,000 
regional population (Mean (SD)) 

34.87 (27.65) 

A&E_Attendances Number of A&E attendances (Total) 76,732,480 

Region = East Midlands (% of Total) 6.51% 

 = East of England (% of Total) 9.99% 

 = London (% of Total) 16.72% 

 = Northeast (% of Total) 7.39% 

 = Northwest (% of Total) 17.20% 

 = Southeast (% of Total) 12.17% 

 = Southwest (% of Total) 7.77% 

 = West Midlands (% of Total) 11.15% 

 = Yorkshire & Humber (% of Total) 11.10% 

Number of treatment facilities 156 

Number of weekly observations 37,897 

Source: Analysis of data from NHS (2022) and StatWales (2022). 
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Table 2: Descriptive Statistics – Temperature Variables 

Temperature 
Bins 

Description Percentage of 
Weekly Maximum 

Temperatures 

[1oC, 4oC) = 1 if weekly maximum temperature is greater than or equal to 1oC 
but less than 4oC, 0 otherwise 

1.2% 

[4oC, 7oC) = 1 if weekly maximum temperature is greater than or equal to 4oC 
but less than 7oC, 0 otherwise 

2.9% 

[7oC, 10oC) = 1 if weekly maximum temperature is greater than or equal to 7oC 
but less than 10oC, 0 otherwise 

10.6% 

[10oC, 13oC) = 1 if weekly maximum temperature is greater than or equal to 
10oC but less than 13oC, 0 otherwise 

20.4% 

[13oC, 16oC) = 1 if weekly maximum temperature is greater than or equal to 
13oC but less than 16oC, 0 otherwise 

14.1% 

[16oC, 19oC) = 1 if weekly maximum temperature is greater than or equal to 
16oC but less than 19oC, 0 otherwise 

15.5% 

[19oC, 22oC) = 1 if weekly maximum temperature is greater than or equal to 
19oC but less than 22oC, 0 otherwise 

15.5% 

[22oC, 25oC) = 1 if weekly maximum temperature is greater than or equal to 
22oC but less than 25oC, 0 otherwise 

12.3% 

[25oC, 28oC) = 1 if weekly maximum temperature is greater than or equal to 
25oC but less than 28oC, 0 otherwise 

5.2% 

[28oC,  ) = 1 if weekly maximum temperature is greater than or equal to 
28oC, 0 otherwise 

2.3% 

Source: Analysis of data from Met Office et al. (2021). 
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Table 3: Main Model Results – Balanced Panel 
 

Notes: Table 3 presents results from the distributed lag regression model presented in Equation [1] in the form of (1) 
contemporaneous effects and (2) cumulative effects. The dependent variable is the weekly A&E treatment facility attendance 
rate per 100,000 regional population and the model is estimated using the balanced panel. The contemporaneous effects 
represent the impact of each weekly maximum temperature bin on A&E attendances in the same week, while the cumulative 
effects measure the impact on both current and subsequent A&E weekly attendances. Standard errors are clustered at the region 
level. *** denotes significant at the 1% level, ** denotes significant at the 5% level, and * denotes significant at the 10% level. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

 
 
  

Temperature Bins (1) Contemporaneous Effects (2) Cumulative Effects 

[1oC, 4oC) -1.512*** 1.589 

 (0.445) (0.987) 

[4oC, 7oC) -0.819*** 0.245 

 (0.157) (0.383) 

[7oC, 10oC) -0.369* 0.032 

 (0.171) (0.438) 

[10oC, 13oC) Base Category Base Category 

 - - 

[13oC, 16oC) 0.569*** 0.998* 

 (0.167) (0.507) 

[16oC, 19oC) 1.102*** 1.527*** 

 (0.238) (0.279) 

[19oC, 22oC) 1.590*** 1.960*** 

 (0.296) (0.288) 

[22oC, 25oC) 2.256*** 2.830*** 

 (0.336) (0.380) 

[25oC, 28oC) 2.651*** 3.014*** 

 (0.308) (0.364) 

[28oC,  ) 2.751*** 2.628*** 

 (0.360) (0.419) 

   

Mean Dependent Variable 34.87 34.87 

Rainfall Controls Yes Yes 

Region-Week FEs Yes Yes 

Region-Year FEs Yes Yes 

Treatment Facility FEs Yes Yes 

Error Cluster One-way One-way 

N 37,433 37,433 
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Figures 
 

Figure 1: Distribution of Daily Maximum Temperatures 

  

Source: Analysis of data from Met Office et al. (2021). 
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Figure 2: Estimated Percentage Contemporaneous and Cumulative Effects 
 

  

(A) Contemporaneous Effects (B) Cumulative Effects 

 

Notes: Figure 2 presents estimated contemporaneous and cumulative effects on weekly A&E attendance rates in percentage terms for each temperature indicator bin. All effects are based on the 
model presented in Equation [1] and estimated using the balanced panel. The contemporaneous effects in Panel (A) represent the percentage effect of each weekly maximum temperature bin on 
A&E attendances in the same week, while the cumulative effects in Panel (B) measure the percentage effect on both current and subsequent A&E weekly attendances. 95% confidence intervals 
are represented by the shaded regions. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Figure 3: Estimated Percentage Weekly Effects – Lowest and Highest Temperature Bins 

 

  

(A) 1-4oC (B) 28+oC 

 

Notes: Figure 3 presents the estimated percentage weekly effects on A&E attendance rates for each week relative to the temperature shock for the (A) lowest and (B) highest temperature bins. 
The contemporaneous effect is represented by t = 0 on the x-axis. All effects are based on the model presented in Equation [1] and estimated using the balanced panel. 95% confidence intervals 
are represented by the shaded regions. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Figure 4: Estimated Percentage Cumulative Effects – Lowest and Highest Temperature Bins 
 

  

(A) 1-4oC (B) 28+oC 

 

Notes: Figure 4 presents the sum of all estimated percentage weekly effects on A&E attendance rates up to and including a given week relative to the temperature shock for the (A) lowest and (B) 
highest temperature bins. The contemporaneous effect is represented by t = 0 on the x-axis. All effects are based on the model presented in Equation [1] and estimated using the balanced panel. 
95% confidence intervals are represented by the shaded regions. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Appendix 1: Changes in Number of Treatment Facilities in Data over Study Period 

Figure A1.1: Number of Treatment Facilities in NHS Data over Study Period  

 
Source: Analysis of data from NHS (2022). 
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Figure A2: Number of Treatment Facilities in NHS Data over Study Period by Region 
 

 
Source: Analysis of data from NHS (2022). 
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Appendix 2: Robustness Test – Unbalanced Panel Model 

Table A2.1: Main Model Results – Unbalanced Panel 

Notes: Table A2.1 presents results from the distributed lag regression model presented in Equation [1] in the form of (1) 
contemporaneous effects and (2) cumulative effects. The dependent variable is the weekly A&E treatment facility attendance 
rate per 100,000 regional population and the model is estimated using the unbalanced panel. The contemporaneous effects 
represent the impact of each weekly maximum temperature bin on A&E attendances in the same week, while the cumulative 
effects measure the impact on both current and subsequent A&E weekly attendances. Standard errors are clustered at the region 
level. *** denotes significant at the 1% level, ** denotes significant at the 5% level, and * denotes significant at the 10% level. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

Temperature Bins (1) Contemporaneous Effects (2) Cumulative Effects 

[1oC, 4oC) -1.310*** 1.498* 

 (0.296) (0.658) 

[4oC, 7oC) -0.545*** 0.783* 

 (0.100) (0.370) 

[7oC, 10oC) -0.267 0.157 

 (0.145) (0.394) 

[10oC, 13oC) Base Category Base Category 

 - - 

[13oC, 16oC) 0.432*** 0.858** 

 (0.105) (0.269) 

[16oC, 19oC) 0.819*** 1.307*** 

 (0.102) (0.225) 

[19oC, 22oC) 1.127*** 1.524*** 

 (0.162) (0.193) 

[22oC, 25oC) 1.678*** 2.368*** 

 (0.172) (0.164) 

[25oC, 28oC) 2.012*** 2.692*** 

 (0.168) (0.248) 

[28oC,  ) 2.077*** 2.274*** 

 (0.208) (0.314) 

   

Mean Dependent Variable 26.54 26.54 

Rainfall Controls Yes Yes 

Region-Week FEs Yes Yes 

Region-Year FEs Yes Yes 

Treatment Facility FEs Yes Yes 

Error Cluster One-way One-way 

N 62,845 62,845 
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Figure A2.1: Estimated Percentage Contemporaneous and Cumulative Effects – Unbalanced Panel 
 

  

(A) Contemporaneous Effects (B) Cumulative Effects 

 

Notes: Figure A2.1 presents estimated contemporaneous and cumulative effects on weekly A&E attendance rates in percentage terms for each temperature indicator bin. All effects are based on 
the model presented in Equation [1] and estimated using the unbalanced panel. The contemporaneous effects in Panel (A) represent the percentage effect of each weekly maximum temperature 
bin on A&E attendances in the same week, while the cumulative effects in Panel (B) measure the percentage effect on both current and subsequent A&E weekly attendances. 95% confidence 
intervals are represented by the shaded regions. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Appendix 3: Robustness Test – Weighted Model 

Table A3.1: Weighted Model Results 

Notes: Table A3.1 presents results from the distributed lag regression model presented in Equation [1] in the form of (1) 
contemporaneous effects and (2) cumulative effects, applying analytical weights based on the average number of A&E 
attendances per treatment facility over the sample period. The dependent variable is the weekly A&E treatment facility 
attendance rate per 100,000 regional population and the model is estimated using the unbalanced panel. The contemporaneous 
effects represent the impact of each weekly maximum temperature bin on A&E attendances in the same week, while the 
cumulative effects measure the impact on both current and subsequent A&E weekly attendances. Standard errors are clustered 
at the region level. *** denotes significant at the 1% level, ** denotes significant at the 5% level, and * denotes significant at 
the 10% level. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

Temperature Bins (1) Contemporaneous Effects (2) Cumulative Effects 

[1oC, 4oC) -2.089** 1.504 

 (0.662) (1.783) 

[4oC, 7oC) -1.128*** 0.023 

 (0.238) (0.622) 

[7oC, 10oC) -0.550* -0.139 

 (0.242) (0.595) 

[10oC, 13oC) Base Category Base Category 

 - - 

[13oC, 16oC) 0.762** 1.445 

 (0.248) (0.817) 

[16oC, 19oC) 1.498*** 2.041*** 

 (0.364) (0.403) 

[19oC, 22oC) 2.133*** 2.457*** 

 (0.403) (0.386) 

[22oC, 25oC) 2.987*** 3.645*** 

 (0.473) (0.471) 

[25oC, 28oC) 3.452*** 3.753*** 

 (0.402) (0.536) 

[28oC,  ) 3.508*** 3.185*** 

 (0.495) (0.507) 

   

Mean Dependent Variable 34.87 34.87 

Rainfall Controls Yes Yes 

Region-Week FEs Yes Yes 

Region-Year FEs Yes Yes 

Treatment Facility FEs Yes Yes 

Error Cluster One-way One-way 

N 37,433 37,433 
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Figure A3.1: Estimated Percentage Contemporaneous and Cumulative Effects – Weighted Model 
 

  

(A) Contemporaneous Effects (B) Cumulative Effects 

 

Notes: Figure A3.1 presents estimated contemporaneous and cumulative effects on weekly A&E attendance rates in percentage terms for each temperature indicator bin. All effects are based on 
the model presented in Equation [1] estimated using the unbalanced panel and applying analytical weights based on the average number of A&E attendances per treatment facility over the sample 
period. The contemporaneous effects in Panel (A) represent the percentage effect of each weekly maximum temperature bin on A&E attendances in the same week, while the cumulative effects 
in Panel (B) measure the percentage effect on both current and subsequent A&E weekly attendances. 95% confidence intervals are represented by the shaded regions. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Appendix 4: Robustness Test – Regional Model 

Table A4.1: Regional Model Results 

Notes: Table A4.1 presents results from a regional version of the distributed lag regression model presented in Equation [1] in 
the form of (1) contemporaneous effects and (2) cumulative effects. The dependent variable is the regional weekly A&E 
attendance rate per 100,000 population and the model is estimated using the balanced panel. The contemporaneous effects 
represent the impact of each weekly maximum temperature bin on A&E attendances in the same week, while the cumulative 
effects measure the impact on both current and subsequent A&E weekly attendances. Standard errors are clustered at the region 
level. *** denotes significant at the 1% level, ** denotes significant at the 5% level, and * denotes significant at the 10% level. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 

 

Temperature Bins (1) Contemporaneous Effects (2) Cumulative Effects 

[1oC, 4oC) -19.963*** 36.706 

 (4.136) (20.994) 

[4oC, 7oC) -12.441*** 5.301 

 (2.969) (7.980) 

[7oC, 10oC) -4.016 -0.900 

 (2.643) (8.307) 

[10oC, 13oC) Base Category Base Category 

 - - 

[13oC, 16oC) 9.454*** 15.612* 

 (2.770) (7.781) 

[16oC, 19oC) 18.072*** 22.918*** 

 (3.008) (4.428) 

[19oC, 22oC) 26.520*** 29.858*** 

 (3.702) (6.353) 

[22oC, 25oC) 37.728*** 43.422*** 

 (4.130) (6.306) 

[25oC, 28oC) 44.846*** 46.541*** 

 (3.926) (10.339) 

[28oC,  ) 47.626*** 41.922*** 

 (3.593) (7.283) 

   

Mean Dependent Variable 606.75 606.75 

Rainfall Controls Yes Yes 

Region-Week FEs Yes Yes 

Region-Year FEs Yes Yes 

Treatment Facility FEs Yes Yes 

Error Cluster One-way One-way 

N 2,124 2,124 
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Figure A4.1: Estimated Percentage Contemporaneous and Cumulative Effects – Regional Model 
 

  

(A) Contemporaneous Effects (B) Cumulative Effects 

 

Notes: Figure A4.1 presents estimated contemporaneous and cumulative effects on weekly A&E attendance rates in percentage terms for each temperature indicator bin. All effects are based on 
a regional version of the model presented in Equation [1] and estimated at regional level using the balanced panel. The contemporaneous effects in Panel (A) represent the percentage effect of 
each weekly maximum temperature bin on A&E attendances in the same week, while the cumulative effects in Panel (B) measure the percentage effect on both current and subsequent A&E 
weekly attendances. 95% confidence intervals are represented by the shaded regions. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Appendix 5: Robustness Test – Lagged Denominator Model 

Table A5.1: Lagged Denominator Model Results 

Notes: Table A5.1 presents results from the distributed lag regression model presented in Equation [1] in the form of (1) 
contemporaneous effects and (2) cumulative effects. The dependent variable is the weekly A&E attendance rate per 100,000 
population in the previous year and the model is estimated using the balanced panel. The contemporaneous effects represent 
the impact of each weekly maximum temperature bin on A&E attendances in the same week, while the cumulative effects 
measure the impact on both current and subsequent A&E weekly attendances. Standard errors are clustered at the region level. 
*** denotes significant at the 1% level, ** denotes significant at the 5% level, and * denotes significant at the 10% level. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021).  

Temperature Bins (1) Contemporaneous Effects (2) Cumulative Effects 

[1oC, 4oC) -1.510*** 1.599 

 (0.445) (0.988) 

[4oC, 7oC) -0.818*** 0.250 

 (0.158) (0.385) 

[7oC, 10oC) -0.369* 0.033 

 (0.170) (0.438) 

[10oC, 13oC) Base Category Base Category 

 - - 

[13oC, 16oC) 0.569*** 0.999* 

 (0.168) (0.507) 

[16oC, 19oC) 1.102*** 1.528*** 

 (0.238) (0.279) 

[19oC, 22oC) 1.590*** 1.960*** 

 (0.296) (0.288) 

[22oC, 25oC) 2.256*** 2.830*** 

 (0.336) (0.381) 

[25oC, 28oC) 2.651*** 3.015*** 

 (0.308) (0.365) 

[28oC,  ) 2.751*** 2.628*** 

 (0.361) (0.419) 

   

Mean Dependent Variable 34.87 34.87 

Rainfall Controls Yes Yes 

Region-Week FEs Yes Yes 

Region-Year FEs Yes Yes 

Treatment Facility FEs Yes Yes 

Error Cluster One-way One-way 

N 37,433 37,433 
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Figure A5.1: Estimated Percentage Contemporaneous and Cumulative Effects – Lagged Denominator Model 

 

  

(A) Contemporaneous Effects (B) Cumulative Effects 

 

Notes: Figure A5.1 presents estimated contemporaneous and cumulative effects on regional weekly A&E attendance rates in percentage terms for each temperature indicator bin. All effects are 
based on the model presented in Equation [1] and estimated using the population in the previous year as the denominator in the dependent variable and the balanced panel. The contemporaneous 
effects in Panel (A) represent the percentage effect of each weekly maximum temperature bin on A&E attendances in the same week, while the cumulative effects in Panel (B) measure the 
percentage effect on both current and subsequent A&E weekly attendances. 95% confidence intervals are represented by the shaded regions. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Appendix 6: Robustness Test – Temperature Count Bin Model 

Table A6.1: Temperature Count Bin Model Results 

 
Notes: Table A6.1 presents results from a count bin version of the distributed lag regression model presented in Equation [1] 
in the form of (1) contemporaneous effects and (2) cumulative effects. The dependent variable is the weekly A&E treatment 
facility attendance rate per 100,000 regional population and the model is estimated using the balanced panel. This model 
includes temperature count bin variables defined as the number of days in a week with daily maximum temperatures falling 
within the range of one of the three-degree temperature bins. The contemporaneous effects represent the impact of each 
additional day falling within a specific temperature range on A&E attendances in the same week, while the cumulative effects 

Temperature Bins (1) Contemporaneous Effects (2) Cumulative Effects 

( , 1oC) -0.331*** 0.196 

 (0.078) (0.198) 

[1oC, 4oC) -0.202** 0.089 

 (0.072) (0.127) 

[4oC, 7oC) -0.116*** -0.060 

 (0.033) (0.086) 

[7oC, 10oC) -0.046 -0.026 

 (0.046) (0.114) 

[10oC, 13oC) Base Category Base Category 

 - - 

[13oC, 16oC) 0.183*** 0.239** 

 (0.036) (0.080) 

[16oC, 19oC) 0.306*** 0.434*** 

 (0.046) (0.074) 

[19oC, 22oC) 0.414*** 0.367** 

 (0.045) (0.155) 

[22oC, 25oC) 0.544*** 0.591*** 

 (0.066) (0.090) 

[25oC, 28oC) 0.582*** 0.613*** 

 (0.075) (0.161) 

[28oC,  ) 0.505*** 0.185 

 (0.095) (0.189) 

   

Mean Dependent Variable 34.87 34.87 

Rainfall Controls Yes Yes 

Region-Week FEs Yes Yes 

Region-Year FEs Yes Yes 

Treatment Facility FEs Yes Yes 

Error Cluster One-way One-way 

N 37,433 37,433 



54 
 

measure the impact on both current and subsequent A&E weekly attendances. Standard errors are clustered at the region level. 
*** denotes significant at the 1% level, ** denotes significant at the 5% level, and * denotes significant at the 10% level. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Figure A6.1: Estimated Percentage Contemporaneous and Cumulative Effects – Temperature Count Bin Model 
 

  

(A) Contemporaneous Effects (B) Cumulative Effects 

 

Notes: Figure A6.1 presents estimated contemporaneous and cumulative effects on weekly A&E attendance rates in percentage terms for each temperature count bin. All effects are based on the 
model presented in Equation [1] and estimated using the balanced panel. The temperature count bin variables are defined as the number of days in a week with daily maximum temperatures falling 
within the range of one of the three-degree temperature bins. The contemporaneous effects in Panel (A) represent the impact of each additional day falling within a specific temperature range on 
A&E attendances in the same week, while the cumulative effects in Panel (B) measure the impact on both current and subsequent A&E weekly attendances. 95% confidence intervals are 
represented by the shaded regions. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Appendix 7: Placebo Test – Model with Tempertaure Lead 

Table A7.1: Placebo Test Model Results 

Notes: Table A7.1 presents results from the distributed lag regression model presented in Equation [1], with a single lead 
added to the model, in the form of (1) contemporaneous effects, (2) cumulative effects, and (3) lead effects. The dependent 
variable is the weekly A&E treatment facility attendance rate per 100,000 regional population and the model is estimated using 
the balanced panel. The contemporaneous effects represent the impact of each weekly maximum temperature bin on A&E 
attendances in the same week, the cumulative effects measure the impact on both current and subsequent A&E weekly 
attendances, while the lead effects represent the effect on attendances in the week prior (i.e. the placebo test). Standard errors 

Temperature Bins (1) Contemporaneous 

Effects 

(2) Cumulative Effects (3) Lead Effects 

[1oC, 4oC) -1.273** 1.958* 0.655* 

 (0.436) (1.016) (0.285) 

[4oC, 7oC) -0.833*** 0.241 0.068 

 (0.159) (0.388) (0.248) 

[7oC, 10oC) -0.311* 0.170 -0.217 

 (0.143) (0.409) (0.194) 

[10oC, 13oC) Base Category Base Category Base Category 

 - - - 

[13oC, 16oC) 0.559*** 1.045* 0.144* 

 (0.162) (0.543) (0.070) 

[16oC, 19oC) 1.067*** 1.562*** 0.105 

 (0.226) (0.275) (0.099) 

[19oC, 22oC) 1.557*** 1.972*** 0.173 

 (0.289) (0.286) (0.115) 

[22oC, 25oC) 2.184*** 2.804*** 0.426** 

 (0.328) (0.397) (0.156) 

[25oC, 28oC) 2.587*** 3.048*** 0.402* 

 (0.308) (0.333) (0.176) 

[28oC,  ) 2.674*** 2.519*** 0.327 

 (0.328) (0.366) (0.248) 

    

Mean Dependent Variable 34.87 34.87 34.87 

Rainfall Controls Yes Yes Yes 

Region-Week FEs Yes Yes Yes 

Region-Year FEs Yes Yes Yes 

Treatment Facility FEs Yes Yes Yes 

Error Cluster One-way One-way One-way 

N 37,433 37,433 37,433 
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are clustered at the region level. *** denotes significant at the 1% level, ** denotes significant at the 5% level, and * denotes 
significant at the 10% level. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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Figure A7.1: Estimated Percentage Weekly Effects – Model with Single Temperature Lead – Lowest and Highest Temperature Bins 

 

  

(A) 1-4oC (B) 28+oC 

 

Notes: Figure A7.1 presents the estimated percentage weekly effects on A&E attendance rates for each week relative to the temperature shock for the (A) lowest and (B) highest temperature bins. 
All effects are based on the model presented in Equation [1] with a single lead added to the model and estimated using the balanced panel. The contemporaneous effect is represented by t = 0 on 
the x-axis and t = -1 represents the week prior to the temperature shock (i.e. the placebo test). 95% confidence intervals are represented by the shaded regions. 

Source: Analysis of data from NHS (2022), StatWales (2022) and Met Office et al. (2021). 
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